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Contexte général

Un système bénéficiant de connaissances peut-être amené à apprendre des informations contra-
dictoires. La révision des croyances vise à rétablir la cohérence dans les connaissances d’un sys-
tème, en préservant un maximum d’informations. La révision des croyances en logique classique
est un domaine établie. Elle fut introduite par le travail de Carlos E Alchourrón, Peter Gärdenfors
et David Makinson en 1985. Les opérateurs introduits dans leur travail présentent un défaut de
cohérence lors de révisions répétitives. En 2001, Daniel Lehmann, Menachem Magidor et Karl
Schlechta proposent de baser les révisions des croyances sur des distances entre valuations, ce
qui rétabli une cohérence entre révisions successives.

D’autre part, la logique modale est une logique plus riche que la logique classique, qui in-
troduit les notions de possibilité, impossibilité, nécéssité et contingence. Cette nouvelle logique
s’interprète non plus avec des valuations mais avec des modèles de Kripke. Étendre la révision
des croyances à la logique modale permettrait à des systèmes plus complexes et aux connais-
sances plus nuancées de mettre à jour leur connaissances automatiquement en préservant leur
cohérence.

Le problème étudié

Pour parvenir à cet objectif, le principal obstacle est de définir une distance entre modèles de
Kripke, qui tiendrait le même rôle que la distance entre valuations dans le processus classique.
Un tel travail a été réalisé par Thomas Caridroit en 2016, mais dans le cas très spécifique des
modèles de Kripke Kd45n. Par ailleurs, d’autres travaux s’intéressent à la révision des croyances
en logique modale sans passer par des distances.

La contribution proposée

Mon travail durant ce stage a été de déterminer plusieurs distances entre modèles de Kripke et
d’étudier leurs propriétés. Pour y parvenir, j’ai décomposé le problème en plusieurs étapes. J’ai
donc défini des méthodes pour construire des distances entre ensembles, entre n-uplets, entre
relations et entre fonctions. En combinant toutes ces méthodes, j’ai défini une grande quantité
de distances entre modèles de Kripke. J’ai ensuite étudié leurs propriétés, ainsi que celles de
distances préexistantes.



L’étude des propriété des distances reprend la forme d’étude axiomatique introduite par Car-
los E Alchourrón, Peter Gärdenfors et David Makinson. Comme eux, je suis parvenue à caracté-
riser deux de mes distances entre ensembles par les axiomes qu’elles satisfont.

J’ai aussi prouvé qu’une propriété fort désirable pour une distance entre ensembles était im-
possible à satisfaire (l’axiome CR4).

Les arguments en faveur de sa validité

La pertinence des distances proposée est encore à déterminer. Une doctorant poursuivra ce
travail à partir de septembre 2022. Cependant, les méthodes que j’ai définies sont très générales
et proposent une grande variété de choix pour construire des distances entre modèles de Kripke.
Le travail restant est donc de déterminer quelles propriétés sont désirables pour une distance à
utiliser en révision des croyances basées sur une distance. Ensuite, mon étude axiomatique per-
mettra de choisir la meilleure construction. Par ailleurs, ces méthodes permettent de construire
des distances entre de nombreux objets mathématiques, ce qui peut servir pour des domaines
très différents. Ils peuvent notamment s’appliquer pour la révision des croyances basées sur une
distance pour d’autres logiques.

Le bilan et les perspectives

La prochaine étape est de déterminer quelles sont les propriétés souhaitables pour une dis-
tance en révision des croyances. Ensuite, mon étude permettra de choisir parmi les constructions
que je propose. Un autre point reste à résoudre : la traduction entre un ensemble de formules et
l’ensembles des modèles de Kripke qui satisfont ces formules. Cette traduction semble possible
mais d’une très grande complexité calculatoire. Il faut aussi trouver un moyen de rendre fini
l’ensemble des formules correspondant à un ensemble de modèles de Kripke. Par exemple, si la
formule ϕ est vraie, alors ϕ ∧ ϕ l’est aussi, ainsi que ϕ ∧ ϕ ∧ ϕ, etc. Ce point est donc encore à
travailler, en trouvant une bonne façon de quotienter ces ensembles.

Finalement, ma contribution a été de proposer tout un ensemble de méthodes pour construire
et étudier des distances entre toutes sortes d’objets mathématiques.

J’ai aussi défini ma propre distance entre ensembles, caractérisé une distance et une fonction,
et réalisé une étude complète des propriété de plusieurs fonctions qui semblent pertinentes pour
la révision des croyances basées sur une distance.

Le résultat d’impossibilité que j’ai prouvé annonce des fortes et inattendues limites sur la
précision des distances que l’on pourra utiliser.
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1 Introduction

Distance-based belief revision, introduced by [LMS01], is an established field in classical logic. The purpose of my
internship is to extend this method to modal logic. The global process is mostly the same, but we now need a distance
between modal interpretations to replace the distance between valuations used in classical distance-based belief revision.
During my internship, I introduced useful methods to construct distances between composed objects, such as modal
interpretations and Kripke models. I also studied axiomatically these constructed distances and I characterized some
of them.

This section introduces modal logic and classical belief revision and defines the goal of the internship. Section 2
introduces axiomatic reasonings and the axioms that I studied during my internship. Section 3 establishes distances
and pre-distances and their axiomatic study. Section 4 applies my work to modal belief revision.

In the present document, ⋆ indicates propositions that I proved and definitions that I introduced during my
internship and ⋄ indicates propositions that I proved but that were already proved in the literature. Only my most
important results are in this report, the others are to be found in the appendix, as well as all the proofs.

1.1 Modal logic

In classical logic, a proposition can be either true or false. Its truth value can possibly be undefined, but as soon
as a proposition has a truth value, it is limited to true or false. Modal logic is a logic in which truth values belong
to a wider set of values, for example: possible, impossible, necessary and contingent. Formally, propositions are still
true and false in modal logic, but the language contains new operators corresponding to modalities. These modalities
depend on the modal logic which is considered. In this report, we consider the modal logic with the operator □ called
“box” and expressing necessity.

We consider the language L generated by ⟨ A,∧,¬,□,⊤,⊥ ⟩, where A is a finite set of atomic propositions and where
⊤ stands for “true” and ⊥ stands for “false”. The same way as we can define ∨ using ¬ and ∧, we can define the
possibility operator ♢ using ¬ and □: let φ be a formula of L, then ♢φ is equivalent to ¬□¬φ. (φ is possible if and
only if it is not necessary that φ is false).

A possible way to evaluate propositions of L is by using Kripke models. First, we define classical valuations:

Definition 1. A valuation on A is a function from A to {0, 1}. The set of all valuations on A is noted by
Val(A) ≜ {0, 1}A.

Definition 2. A Kripke model is a triple ⟨W,R, f⟩ where:
• W is a non empty set. Its elements are called “worlds”.
• R is a relation on W called accessibility relation.
• f :W → Val(A) is called interpretation function or labelling function

Then we define how to evaluate the truth value of a modal proposition with a Kripke model:

Definition 3. We define recursively the truth of a formula of L in a world w of a model ⟨W,R, f⟩ by:

w |= ⊤, w ⊭ ⊥
w |= a if and only if f(w)(a) = 1 when a ∈ A

w |= ¬φ if and only if w ⊭ φ
w |= φ ∧ ψ if and only if w |= φ and w |= ψ
w |= □φ if and only if ∀w′ ∈W,wRw′ ⇒ w′ |= φ

A formula φ of L is true in a model ⟨W,R, f⟩ if ∀w ∈W,w |= φ.

1.2 Belief revision

Any intelligent system able to collect new information can have to face a situation where his knowledges are
contradictory. The purpose of belief revision is to find an efficient algorithm allowing such systems to correct its
knowledges, in order to keep them consistent. Several questions appear while trying to solve this problem: How to
know which knowledge to keep ? How to keep as many knowledges as possible during revision ? How to ensure that
consecutive revisions will stay relevant ? [AGM85] introduced abstract revision operators. [LMS01] then introduced
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the idea that revision could be done using a distance between valuations, this is the distance-based belief revision.
[DP97] exhibited weaknesses of the revision operators defined by [AGM85] in the case of iterated belief revision. In the
distance-based belief revisions, the distance gives a coherence to the successive revisions which could be the solution
for successful iterated belief revisions. [Hub13] summerises the AGM theory and several works about iterated belief
revision.

1.3 Distance-based belief revision

A valuation can be understood as a description of the state of the world, through the truth value of the considered
variables. Then, assuming that a set of formulas is true, we know that there are some worlds in which we can be,
and others in which we cannot be. This set of possible worlds, in fact a set of valuations, is a mathematical object
that we can study with distances. This set furthermore countains exactly the same abstract information as the original
set of formulas. The idea of distance-based belief revision is to translate the set of formulas representing the beliefs
of the system, into the semantic world of valuations. Formally, if Γ is the set of beliefs at the begining and α is the
new information, we translate them in sets of valuations with the following operators. In our case, we assume that α
is more reliable than Γ. Then we consider the set of valuations compatible with α which are closest to the valuations
compatible with Γ, and finally, we translate it back to a set of formulas with Th:

Definition 4. We assume a language L′ of classical logic, and X be a set of valuations on L′, we define:
ThL′(X) ≜ {α ∈ L′ | X |= α} (The set of all the formulas of L′ satisfied by all valuations of X)
Let α ∈ L′, Mod(α) ≜ {v ∈ Val(A) | v |= α}. ( The set of all valuations satisfying (modeling) α)
Let Γ ∈ Pow(L′), SetMod(Γ) ≜ {v ∈ Val(A) | v |= Γ} (where v |= Γ means ∀φ ∈ Γ, v |= φ).

Definition 5. A revision operator is a function ∗ : Pow(L′) × L′ → Pow(L′). A distance-based revision d is a
revision operator such that, for all ⟨Γ, α⟩ ∈ Pow(L′) × L′: Γ ∗ α ≜ ThL′( Closest(Mod(α), SetMod(Γ)) ) where
Closest(Mod(α), SetMod(Γ)) is the set of the elements of Mod(α) the closest to SetMod(Γ) for a distance d between
valuations and set of valuations.

Γ , α
∗

Γ ∗ α

Syntax

Semantics

SetMod(Γ)
Mod(α)

minimal distance

Closest(Mod(α), SetMod(Γ))

ThL′

Figure 1: Process of the distance-based revision

1.4 Goal of the internship

The goal of my internship was to generalise distance-based belief revision to modal logic. More precisely, I had
to find a distance between Kripke models, and if possible to find the interresting properties it satisfies. Once such a
distance is defined, the same process as in classical distance-based belief revision can be executed, replacing the distance
between valuations by a distance between Kripke models.

Because a Kripke model is a triple of a set, a relation and a function, and because a distance between triples
can be constructed by adding the distances between each element, I decided to divide my work in two parts: first
I defined distances between tuples, between sets, between relations and between functions, and secondly I put all of
these distances together to construct distances between Kripke models. I also studied the distances axiomatically, as
explained in Section 2.
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A similar work was realised in [CKdLM16] about the specific case of KD45n Kripke models. In [GW19], two
characterizations for revision operators were exhibited. These revisions, which also use Kripke models, are not distance-
based, but the second characterization uses a similar intuition by counting the necessary modifications to get from one
model to another.

2 Requirements on distances

The usual properties of a distance might not be all relevant, so we define the notion of pre-distance, which is more
general:

Definition 6. Let X be a set. A pre-distance on X is a function from X ×X to [0,+∞).

For example, in the mountains, it can be more difficult to go from a point A to a point B than the other way round if
A is higher than B. Thus symmetry is not always a relevant property. It can also cost energy to stay in a given state,
in which case respect of identity is not relevant.

2.1 Axiomatic reasonings

Axiomatic reasonings were first introduced by [AGM85] and widely reused afterwards. The idea is to characterize
a function with “axioms”, which are in fact properties that the function satisfies. The axiomatic study allows to better
understand a function and to know whether this function is relevant for some purpose or not. [AGM85] used this
method to characterize his definition of revision.
The book [Gär88] details the axiomatic characterization of the expansion, the contraction and the revision operators.

2.2 Axioms on pre-distances

We then express the properties of a pre-distance through axioms. Each axiom expresses whether a particular information
about the similarities and differences between the two elements in parameter is conveyed or not by the pre-distance F .

2.2.1 Axioms on pre-distances

Definition 7 (⋆). Let X be a set and F be a pre-distance on X. We define the following axioms:

(CR1) : (Identity respecting) ∀A,B ∈ X, F (A,B) = 0 ⇐⇒ A = B

(CR2) : (Symmetric) ∀A,B ∈ X, F (A,B) = F (B,A)

(CR3) : (Triangle inequality) ∀A,B,C ∈ X, F (A,B) ⩽ F (A,C) + F (C,B)

(CR1W) : (Weak respect of identity) ∀A ∈ X, F (A,A) = 0

The usual definition of a distance now appears as a specific pre-distance:

Definition 8. A distance is a pre-distance that satisfies (CR1), (CR2) and (CR3).

2.2.2 Axioms on pre-distances between sets

We introduce the following notation:

Notation :

• We note by #X the cardinal of a set X.

• Let X be a set of sets, we note by
⋃
X the union of all elements of X, ie.

⋃
X ≜

⋃
A∈X

A.

We use as convention:
⋃
∅ = ∅.
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Definition 9 (⋆). Let X be a set of sets and F a pre-distance on X. We define the following axiom:

(CR5) : (Subset’s equivalence)
∀A,A′, B ∈ X, (A ⊆ B ∧A′ ⊆ B ∧#A = #A′) ⇒ F (A,B) = F (A′, B)

(CR6) : (Stranger’s equivalence)
∀A,B ∈ X, ∀x, y ∈

⋃
X, {x, y} ∩ (A ∪B) = ∅ ⇒ F (A ∪ {x}, B) = F (A ∪ {y}, B)

(CR5) means that two subsets of a same set, with the same cardinal, are treated the same way by F . That is to
say that the identity of the elements of a subset does not matter. Only the quantity of elements in the subset can affect
F .
(CR6) axiom expresses the anonymity of extern elements. If an element is new to A and B, then adding it to A or
adding another new element to A has the same effect on the difference between this union and B, defined with F .

B

A

A′

F (A,B) = F (A′, B)

(a) (CR5): (A and A′ are equivalent
for F when compared to B)

A
B

x

y

F (A ∪ {x}, B) = F (A ∪ {y}, B)

(b) (CR6): (Any extern element to A
and B is equivalent for F )

Figure 2: Illustration of (CR5) and (CR6)

Definition 10 (⋆). Let X be a set of sets and F a pre-distance on X. We define the following axioms:

(CR7Str) : (Stranger decomposability)
∀A,B ∈ X, ∀x ∈

⋃
X, {x} ∩ (A ∪B) = ∅ ⇒ F (A ∪ {x}, B) = F (A,B) + F ({x}, B)

Let K be a real number,
(CR8K) : (K-countability)
∀A,B ∈ X, ∀x ∈

⋃
X, {x} ∩ (A ∪B) = ∅ ⇒ F (A ∪ {x}, B) = F (A,B) +K

(CR16) : (Inserting growth)
∀A,B ∈ X, ∀x ∈

⋃
X, {x} ∩ (A ∪B) = ∅ ⇒ F (A ∪ {x}, B) > F (A,B)

(CR7) expresses the fact that the pre-distance F can be decomposed in the distances between each element of A stranger
to B and B. (CR8K) expresses the fact that each element is counted with the same value: 1. (CR16) ensures that
adding a new element to a set A will increase the difference between A and B expressed by F (A,B), as soon as the
new element is not in B.

2.2.3 Axioms on pre-distances between subsets of a finite metric space

We need a number majoring all the possible distances in a finite metric space:

Definition 11 (⋆). Let ⟨X, d⟩ be a finite metric space, we define Dmax(X, d) ≜ max
(x,y)∈X2

d(x, y).
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Definition 12 (⋆). Let ⟨X, d⟩ be a finite metric space. We define the following axioms:

(d-CR4) : (Elementary d-monotony)

∀(x, x′, y, y′) ∈ X4, ∀A ⊆ X,∀B ⊆ X,
(d(x, x′) < d(y, y′) ∧ {x, y} ∩A = ∅ ∧ {x′, y′} ∩B = ∅) ⇒ F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {y}, B ∪ {y′})

(d-CR11) : (d-represented)
∀A ⊆ X,∀B ⊆ X, (A ̸= ∅ ∧B ̸= ∅) ⇒ ∃(a, b) ∈ A×B | F (A,B) = d(a, b)

(d-CR17a) : (d-singleton fidelity)
∀a, b ∈ X, F ({a}, {b}) = d(a, b)

(d-CR4) expresses the capacity of a pre-distance F to express the distances between each element of the sets A and
B. If the distance between two elemens of A and B increses, (d-CR4) ensures that F (A,B) also increases. We see in
subsection 2.4 that this axiom is problematic.

2.2.4 Axioms on pre-distances on cartesian products

Definition 13 (⋆). Let ⟨X, d⟩ be a finite metric space and Y be a set. We define:

(d-CR12L) / (d-CR12R) / (d-CR12n): (d-left-monotony, d-right-monotony, d-n-monotony (for tuples)).
(Left-monotony): ∀(x, x′, y, y′) ∈ X4, ∀(a, b) ∈ Y 2, d(x, x′) < d(y, y′) ⇒ F (⟨x, a⟩, ⟨x′, b⟩) < F (⟨y, a⟩, ⟨y′, b⟩)
(d-right-monotony is the same rights, and n-d-monotony is the same at rank n.)

This axiom allows us to know the properties of d are preserved through the combination of several pre-distances
introduced in Substections 3.1 and 3.4 and in Section 4.

2.3 Relations beween axioms

It is worth noticing that one pre-distance cannot satisfy all the axioms. Therefore, I study in this subsection the
relations of compatibility and incompatibility of the axioms. I also examine dependences and independences between
axioms. This gives us an overview of which combinations of axioms is possible or impossible to reach with a given
distance. For example, (CR4) is a very desirable axiom that cannot be reached in a large amount of finite metric
spaces, as we will see.

Proposition 1 (⋆). We have the following relations between axioms:
Implications:

• (CR1) + (CR2) + (CR8) ⇒ (CR3), (CR5), (CR6)

• (CR8) ⇒ (CR6), (CR16)

• (d-CR11) ⇒ (d-CR17a)

• (CR7Str) ⇒ ∀x ∈ X, F (∅, {x}) = 0

Independences:

• (CR6) + (CR16) ⇏ (CR8)

• (CR2) + (CR8) ⇏ (CR1)

• (d-CR17a) ⇏ (d-CR11)

Incompatibilities:

• (CR7Str) ⇒ ¬(CR1)

• (CR1) + (CR2) + (CR8) ⇒ ¬(CR7Str)
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We now know which properties are desirable for a pre-distance to satisfy, and we also know that we will have
to make a choice at some point, because it is impossible to convey all the information through a same pre-distance.
Knowing this, we will construct concrete pre-distances and examine which axioms they satisfy.

2.4 Impossibility result

We first define valuations and a distance between valuations:

Definition 14. Let X be a set, we define the Hamming distance Ham as the distance on Val(X) such that
∀v, w ∈ Val(X): Ham(v, w) ≜ #{x ∈ X | v(x) ̸= w(x)}

Proposition 2 (⋆). (Eucl-CR4) cannot be satisfied (if Eucl is the euclidian distance in a geometric space).
(Ham-CR4) cannot be satisfied.

Proof. ((Eucl-CR4) cannot be satisfied) We consider the set X = {a, b, c, d, e} on Figure 3. Suppose there exists a
function F on X ×X respecting (Eucl-CR4), then:
Eucl(a, d) > Eucl(a, e) implies F ({b, a}, {c, d}) > F ({b, a}, {c, e}) (red in the figure)
Eucl(b, e) > Eucl(b, d) implies F ({a, b}, {c, e}) > F ({a, b}, {c, d}) (green in the figure)
We find a contradiction, so no such F exists.

a

b

c

d

a

b

c

e

Figure 3: Counter-example for (CR4)

In fact the satisfiability of (d-CR4) strongly depends on X.
A further study of the cases where (CR4) is impossible is
to be found in the appendix.

3 Pre-distances and distances

3.1 Candidates

3.1.1 Most general distance

We first define the drastic distance, which can be used on any set.

Definition 15. Let X be a set. The drastic distance on X is the distance on X such that ∀A,B ∈ X:

Drast(A,B) ≜

{
0 if A = B
1 otherwise

Thanks to Drast we can make a metric space out of any set. Drast is especially useful as a piece of construction when
no distance on X is known.

3.1.2 Distances on cartesian products

Although being very simple, the following lemma proves to be central in the construction of distances of composed
objects. Indeed, it allows us to decompose any complex problem into several elementary problems. It can be used
to define pre-distances not only between cartesian products, but also between relations and even between functions,
because these objects are pairs or are isomorphic to pairs.

Lemma 1 (⋆). Let n ∈ N, (⟨Xi, di⟩)i∈J1,nK be n metric spaces. We note d ≜ (di)i∈J1,nK and X ≜ X1 × ... ×Xn,

then the function Sumd on X×X such that ∀x,y ∈ X: Sumd(x,y) ≜
n∑
i=1

di(xi, yi) is a distance on X.

3.1.3 Pre-distances between sets

6



Definition 16 (⋄). Let X be a set of finite sets. We
define Delta(A,B) ≜ #(A∆B) where A∆B is the
symmetric difference between A and B (ie. A∆B ≜
(A \B) ∪ (B \A)).

A

B A∆B

Figure 4: Symmetric difference

Proposition 3 (⋄). Delta is a distance on any set of finite sets.

Delta is exactly Ham applied to the indicator functions of the considered sets.
This result was already proven in [Bes73], which also defines other relevant distances between subsets of a set. The

common drawback of all these distances is that they do not consider the distance between the elements of the subsets.
We formalise this property in the axiomatic study of Delta.

Definition 17 (⋆). Let X be a finite set of finite sets. Then
⋃
X is finite and we can label its elements:

⋃
X =

{x1, x2, ...} to create an order between them.
Let A ∈ X, 1A can be seen as (1A(xi))i∈J1,#

⋃
XK, which is a finite sequence of 0 and 1. This can be seen as a

binary number.
We define Numb(A) as the element of N that corresponds to the binary number representer by (1A(xi))i∈J1,#

⋃
XK.

Then we define: Bin(A,B) ≜ |Numb(A)− Numb(B)|

Proposition 4 (⋆). Bin is a distance on any finite set of finite sets.

This distance seems to be very likely unfitted for distance-based belief revision, and we will formalise why in the
axiomatic study.

The two previous distances have a strong drawback for belief revision: they do not consider the distance between
the elements of the sets. For example, if our set of atomic propositions is {a, b, c} and if we note the valuation v such
that v(a) = 0, v(b) = 1, v(c) = 1 by (0, 1, 1), and so on, then:

Delta({(0, 0, 0)}, {(0, 0, 1)}) = 1 = Delta({(0, 0, 0)}, {(1, 1, 1)})

while the two sets on the left seem closer to each other than the two on the right.

In the next subsection, we define distances and pre-distances which consider this matter. On the other hand, as
one pre-distance cannot convey all the information, the pre-distances of the next section do not express the cardinality
of the difference between two subsets.

3.1.4 Pre-distances between subsets of a metric space

The main difficulty to define a distance between Kripke semantics is to achieve to construct a distance between
sets of elements, using a distance between the elements.

In the case of S5 Kripke semantics, the starting distance will be the Hamming distance. The pre-distances defined in
this section will also be used to define pre-distances between relations, using as starting pre-distance a pre-distance
between pairs, thanks to the observation that relations are sets of pairs.

In this subsection, I introduce several pre-distances and prove that only two of them are distances. One of them is the
already known Hausdorff distance, noted by Haus.

We first use as convention min(∅) = 0; which is perfectly counter-intuitive but necessary here.

Definition 18. Let ⟨X, d⟩ be a metric space. We define the following functions on Pow(X) × Pow(X), such that
∀A,B ∈ Pow(X): ( with min(∅) = 0 )

Hausd(A,B) ≜ max(max
b∈B

min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b)) (the Hausdorff distance)
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Definition 19 (⋆). Let ⟨X, d⟩, let A,B ∈ Pow(X) and f : A→ B. We define:

Dist(d,A,B, f) ≜
∑
a∈A

d(a, f(a))

Definition 20 (⋆). Let ⟨X, d⟩ be a metric space. We define the following functions on Pow(X) × Pow(X), such
that ∀A,B ∈ Pow(X): ( with min(∅) = 0 )

Injd(A,B) ≜ min
f :A↪→B

Dist(d,A,B, f) + min
f :B↪→A

Dist(d,B,A, f) + |#A−#B| × Dmax(X, d)

We then use as convention min(∅) = Dmax(X, d) for the next pre-distances.

Definition 21 (⋆). Let ⟨X, d⟩ be a metric space. We define the following functions on Pow(X) × Pow(X), such
that ∀A,B ∈ Pow(X): ( with min(∅) = Dmax(X, d) )

• PointSetd(A,B) ≜
∑
x∈A

dist(x,B, d) +
∑
y∈B

dist(y,A, d)

where dist(x,B, d) ≜ min{d(x, y)|y ∈ A}

• Pairsd(A,B) ≜
∑

(x,y)∈A×B

d(x, y) −
∑

(x,y)∈(A∩B)2

d(x, y)

Number of elements that differ

Distance between elements
Drast

Delta

Haus, Max

PointSet, WSD

Inj, Nij

MaxSum

Ideal distance

Figure 5: Expressivity of the pre-distances

Proposition 5 (⋆). Let ⟨X, d⟩ be a metric space, Injd
and Hausd are distances between the subsets of X, and
PointSetd, Pairsd are not.

Finally, Figure 5 summerizes which pre-distances express
the cardinality of the difference between sets, and which
ones consider the distances between the elements, and in
which proportions. The pre-distances in cyan are defined
and studied in the appendix.

3.1.5 Distances between relations

This subsection is a direct application of the previous results. Let X be a set. A relation on X is no more than a set of
pairs of elements of X. Suppose we already know a distance d on X. Then by lemma 1, Sum(d,d) is a distance on X×X,
ie., a distance between pairs of X. Then HausSum(d,d) is a distance on Pow(X ×X), ie., a distance between relations on
X. Similarly we have:

Proposition 6 (⋆). Let ⟨X, d⟩ be a metric space, HausSum(d,d) and InjSum(d,d) are distances between relations on
X.

The same can be done with other pre-distances, which could result in pre-distances that are not distances, but still are
interresting.
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3.1.6 Distances between functions

In a similar way, we apply the previous results. Let X,Y be two sets. A function f : X → Y can be seen as the subset
of X × Y , of all pairs ⟨x, f(x)⟩. More formally:

Definition 22. Let X,Y be two sets. Let f : X → Y be a function, we define the graph of f as

Graph(f) ≜ {⟨x, f(x)⟩ | x ∈ X}.

A first option is to use a distance between sets, such that Delta, to compare the graphs of the functions. More formally:

Definition 23 (⋆). Let X be a finite set and Y be a set, we define the function on Y X×Y X such that ∀f, g ∈ Y X :
FunDistDelta(f, g) ≜ Delta(f, g) where f is considered as Graph(f) and g as Graph(g).

Proposition 7 (⋆). Let X be a finite set, FunDistDelta is a distance between functions from X to any other set.

This is a consequence of Delta being a distance between finite sets.
Suppose we already now a distance d on X and a distance d′ on Y , then we have a distance on X×Y with HausSum(d,d′).
So we can define distances between functions:

Definition 24 (⋆). Let ⟨X, d⟩ and ⟨Y, d′⟩ be two metric spaces, we define the functions on Y X × Y X such that
∀f, g ∈ Y X : FunDistHaus,d,d′(f, g) ≜ HausSum(d,d′)(f, g) and FunDistInj,d,d′(f, g) ≜ InjSum(d,d′)(f, g) where f is
considered as Graph(f) and g as Graph(g).

Proposition 8 (⋆). Let ⟨X, d⟩ and ⟨Y, d′⟩ be two metric spaces, FunDistHaus,d,d′ and FunDistInj,d,d′ are distances
between functions from X to Y .

One could also want to compare the images of a same element through two different functions. For example, comparing
f(x) to g(y) seems less relevant than comparing f(x) and g(x) when comparing f and g. The Hamming distance counts
the points where two valuations differ. This is relevant because valuations can take on two values (0 or 1). Let’s extend
this idea to functions taking values in a metric space:

Definition 25 (⋆). Let X be a set and ⟨Y, d⟩ be a finite metric space, and let f and g be two functions from X

to Y . We define: ExtHamd(f, g) ≜
∑
x∈X

d(f(x), g(x)).

Ham then is exactly ExtHamDrast applied to valuations.

Proposition 9 (⋆). Let X be a finite set and ⟨Y, d⟩ be a finite metric space, ExtHamd is a distance on Y X .

We now know how to define distances between relations on a set X and between functions from a set X to a set Y ,
using as starting points a distance on X and a distance on Y . Those results are very general and will be applied to
Kripke semantics in Section 4.

3.1.7 Combination with sum

Adding two distances is a way to accumulate the information out of two different distances.

Definition 26 (⋆). Let X be a set and d, d′ be two distances on X, let x, y ∈ X, we define:

Plusd,d′(x, y) ≜ d(x, y) + d′(x, y)

Proposition 10 (⋆). Let X be a set and d, d′ be two distances on X, Plusd,d′ is a distance on X.

Remark 1 : A distance multiplicated by any constant number which is not 0 is also a distance. This allows to give
weight to our distances in order to give them more impact or to compensate a natural difference of scale.

If one distance is stritcly more important than the other, it is possible to simulate the lexicographic order with the
following distance:
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Definition 27 (⋆). Let X be a set and d, d′ be two distances on X, let x, y ∈ X, we define:

Lexd,d′(x, y) ≜ d(x, y)× Dmax(X, d) + d′(x, y)

Proposition 11 (⋆). Let X be a set and d, d′ be two distances on X, Lexd,d′ is a distance on X.

Remark 2 : This same method can be also used with Sum to give more importance to some elements of the tuples.

3.2 Axiomatic study of the candidates

The axioms satisfied by the previous pre-distances are summerized in figure 6. The proofs are to be found in the
appendix, with a more complete axiomatic study. On figure 6, blue cells stand for the cases where the result depends
on d, d1 or d2. Grey cells stand for non relevant cases. “S” and asterixs stand for special cases which are specified in
the proofs in appendix.

Figure 6: Axiomatic study of the introduced pre-distances

The properties on figure 6 formalises the fact that Drast is very unexpressive. We will use Drast only when we
need to know if two elements are different or not (thanks to (CR2)) or when we have no other choice.

(CR5) and (CR6) show that Delta treats each element in the same way. This can be seen as a strong point if yout
purpose is to count the number of elements differing betweena set A and a set B, which is exactly what Delta does.
This can also be seen as an inconvenient because Delta does not consider the distance between the elements of A and
B. The fact that Delta “counts” the elements differing between A and B is made explicit by (CR8).

Bin appears to be very unfitted for distance-based belief revision, even less than Drast based on the number of
axioms they both satisfy. More concretely, Bin neither gives an information about cardinality, nor does it give an
information about the distance of the elements of the sets. The only information given by Bin is about the binary
numbers representing the subsets, which is not relevant information for belief-revision.

(CR11) expresses the fact that Haus gives a precise information about the distance between some elements in the
compared subsets. (CR5) expresses the fact that Inj is less precise about distance between elements in the case of
A ⊆ B.

3.3 Characterization of some candidates

Proposition 12 (⋆). Let X be a finite set, Delta is the only pre-distance satisfying (CR1), (CR2) and (CR81)
on Pow(X).

The previous characterization teaches us that Delta is the only distance giving a precise information about the cardi-
nality of the difference between two sets.

Proposition 13 (⋆). Let K be a real number, K × Delta is the only pre-distance satisfying (CR1), (CR2) and
(CR1K).
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Proposition 14 (⋆). Let ⟨X, d⟩ be a metric space, Pairsd is the only function on X satisfying (CR1W ), (CR2),
(CR7Str) and (d-CR17a).

3.4 For the sake of generalisation

In subsetction 3.1.4, we define several pre-distances between subsets of a metric space, using the distance of the
metric space. For example, with a metric space ⟨X, d⟩, Hausd is constructed using d. We will need to combine these
methods several times, so we need a more general notation, and we must get rid of indices. From now on, we will
therefore also use the notation F (d) as a pre-distance variable, which can be either Hausd, Injd or any pre-distance
constructed on d. Haus is then the function associating Hausd to d for example, and F is a function variable from
distances on X to distances on Pow(X). We then call F a set-distance function.

Definition 28 (⋆). A set-predistance function F is a function that maps to any pre-distance d on a set X a
pre-distance on Pow(X). If F is such that if d being distance implies F (d) being a distance, then F is called a
set-distance function.

It then becomes natural to write Haus(d) for Hausd, and so on.

Definition 29 (⋆). Let ⟨X, d⟩ be a metric space. We define: Haus(d) ≜ Hausd, Inj(d) ≜ Injd, and so on.

With the same idea :

Definition 30 (⋆). A tuple-distance function F is a function that maps to any family of pre-distances d =
(di)i∈J1,nK on a family of sets (Xi)i∈J1,nK a pre-distance on X1× ...×Xn and such that if d is a distance, then F (d)
is a distance.

The notation Sum(d) instead of Sumd also becomes natural.

Definition 31 (⋆). A relation-predistance function R is a function that maps a pre-distance between relations on
a set X to a triple of a set-predistance S, a tuple-distance T and a pre-distance d on X.
Besides, if R is such that S being a set-distance and d being a distance implies that R(S, T, d) is a distance, then
R is called a relation-distance function.

Definition 32 (⋆). Let ⟨X, d⟩ be a metric space, S a set-predistance function, T a tuple-distance function, we
define: RDF(S, T, d) ≜ S(T (d, d)).

Definition 33 (⋆). A function-predistance function is a function F that maps a pre-distance between functions
from a set X to a set Y to a quadruple of a set-predistance function S, a tuple-distance T , a pre-distance d on X
and a pre-distance d′ on Y .
Besides, if F is such that S being a set-distance function, d and d′ being distances implies F (S, T, d, d′) being a
distance, then F is called a function-distance function.

Definition 34 (⋆). Let ⟨X, d⟩ and ⟨Y, d⟩ be two metric spaces, S a set-predistance function, T a tuple-distance
function, we define: FDF(S, T, d, d′) ≜ S(T (d, d′)).

Proposition 15 (⋆). Haus and Inj are set-distance functions, Sum is a tuple-distance, RDF is a relation-distance
function and FDF is a function-distance function.

4 Application to belief revision in modal logic

All the following propositions are direct consequences of the properties in Section 3.
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Proposition 16 (⋆). Let ⟨Ω, d⟩ be a metric space. If Pf is a pre-distance between functions from Ω to Val(A), FR
is a relation-predistance function, T and T ′ are tuple-distance functions, S and S′ are set-preditsance functions
then T (S(d), FR(S

′, T ′, d), Pf ) is a pre-distance between finite Kripke models taking their values in Ω.
Besides, if Pf is a ditsance and FR is a relation-distance function and S, S′ are set-distance functions then
T (S(d), FR(S

′, T ′, d), Pf ) is a distance between finite Kripke models taking their values in Ω.

If the considered Kripke models take their values in a set Ω without any known distance on it, then ⟨Ω, Drast⟩ is always
a metric space.

Corollary 1 (⋆). Let ⟨Ω, d⟩ be a metric space. If F is a pre-distance function, d′ is a pre-distance between
valuations, S, S′, S′′ are set-predistance functions, FR is a relation-predistance function, T, T ′, T ′′ are tuple-distance
functions, then T (d, FR(S, T

′, d), F (S′, T ′′, d, d′)) is a pre-distance between finite Kripke models taking their values
in Ω.
Besides, if F is a function-distance function, S, S′, S′′ are set-distance functions, d′ is a distance, and FR is a
relation-distance function, then T (S(d), FR(S

′, T ′, d), F (S′′, T ′′, d, d′)) is a distance between finite Kripke models
taking their values in Ω.

Corollary 2 (⋆). The following functions are distances between finite Kripke models:
• Sum(Haus(Drast), RDF(Haus, Sum, Drast), FDF(Haus, Sum, Drast, Ham))
• Sum(Inj(Drast), RDF(Inj, Sum, Drast), FDF(Inj, Sum, Drast, Ham))
• Sum(Haus(Drast), RDF(Haus, Sum, Drast), ExtHamHam)
• Sum(Haus(Drast), RDF(Inj, Sum, Drast), Delta)
• Sum(Delta, Delta, Delta)
and so on...

If there is a distance on Ω, Drast can be replaced by this distance.
The nature of the elements of W in a Kripke model ⟨W,R, f⟩ has no effect on the interpretation of formulas. The
following functions can therefore seem more relevant than the previous ones, even though they are not mathematically
distances.

Definition 35 (⋆).
D1(⟨W,R, f⟩, ⟨W ′, R′, f ′⟩) ≜ RDF(Haus, Sum, Drast)(R,R′) + ExtHamHam(f, f

′)
D2(⟨W,R, f⟩, ⟨W ′, R′, f ′⟩) ≜ RDF(Inj, Sum, Drast)(R,R′) + ExtHamHam(f, f

′)
D3(⟨W,R, f⟩, ⟨W ′, R′, f ′⟩) ≜ RDF(Haus, Sum, Drast)(R,R′) + ExtHamHam(f, f

′)
And so on...

The possible combinations are numerous and the relevance of each is still to be discussed and studied.

5 Conclusion and perspectives

The goal of this internship was to find a distance between Kipke models, in order to extend distance-based belief
revision to modal logic. A second, optional part of the internship was to study the properties of the found distance
and try to characterize it, if time allowed it. I chose to break the problem down several steps: I found one distance
between subsets of a metric space: Inj and I studied the properties of two others Delta and Haus. I introduced and
assembled a range of construction methods allowing to define distances between different kinds of mathematical objects.
Those methods are general and can be applied to a lot of different domains of research, beginning with the extension
of distance-based revision for other sorts of logics.

I then applied those methods to construct distances and pre-distances between Kripke models. The offered pos-
sibilities for constructing such pre-distances are numerous, this is why the axiomatic study of the distances is a main
point. Next year, a PhD student will study further the subject of distance-based revision in modal logic. It is still to
be determined, which axioms are desirable for the pre-distance to satisfy. Once this point will be cleared, the axiomatic
study of my pre-distances will allow to determine which is the most relevant for distance-based revision.

The impossibility result on (CR4) expresses a surprising limit on what pre-distances between subsets of a metric
space can express. The characterization of Delta shows that it is the only pre-distance giving a precise indication about
the cardinality of the difference between subsets. The characterization of Pairs shows that (CR7Str) is not a relevant
axiom for a distance to satisfy.

My tutors encouraged me to write an article to submit to the journal IJAR, which is now in progress
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A Proofs

A.1 Proofs of section 2

Proof. ((Ham-CR4) cannot be satisfied)

Remark 3 : We note that we can reach a similar contradiction as in the counter-example for Eucl on any metric space

⟨X, d⟩ as long as there exist a, b, c, d, e,∈ X such that

{
d(a, d) > d(a, e)
d(b, e) > d(b, d)

Using the previous remark: suppose there exists F satisfying (Ham-CR4). We find some valuations a, b, c, d, e such that:{
Ham(a, d) > Ham(a, e)
Ham(b, e) > Ham(b, d)

Fo example, if #X = 3, we can take a = (0, 0, 0), b = (1, 1, 1), c = (1, 0, 1), d = (1, 1, 0) and e = (1, 0, 0).

Then Ham(a, d) = 2 > 1 = Ham(a, e) and Ham(b, e) = 2 > 1 = Ham(b, d).
So we find the same contradiction again.

Proof. (Relations between axioms)

• (CR1) + (CR2) + (CR8) ⇒ (CR3), (CR5), (CR6): This is a direct consequence of proposition 12 in
Subsection 3.1.3.

• (CR8) ⇒ (CR6), (CR16): Let X be a set of finite sets and F be a pre-distance on X satisfying (CR8). Let
x, y ∈

⋃
X and A,B ∈ X such that {x, y} ∩ (A ∪B) = ∅.

F (A ∪ {x}, B) = F (A,B) + 1 = F (A ∪ {y}, B) so F satisfies (CR6).
F (A ∪ {x}, B) = F (AB) + 1 > F (A,B) so F satisfies (CR16).

• (CR9) ⇒ (CR16): Let X be a set of finite sets and F be a pre-distance on X satisfying (CR9). Let x ∈
⋃
X

and A,B ∈ X such that {x} ∩ (A ∪B) = ∅.
#((A ∪ {x})∆B) > #(A∆B) so F ((A ∪ {x}), B) > F (A,B). So F satisfies (CR16).

• (d-CR12SX) ⇒ (d-CR12X) (with X = L,R or n): Direct.

• (d-CR11) ⇒ (d-CR17a): Direct.

• (CR7Str) ⇒ ∀x ∈ X, F (∅, {x}) = 0:
Let X be a set of finite sets and F be a pre-distance on X satisfying (CR7Str), let x, y ∈

⋃
X | x ̸= y, we have

F ({y}, {x}) = F (∅, {x}) + F ({y}, {x}) so F (∅, {x}) = 0

• (CR6) + (CR16) ⇏ (CR8): Let X be a set of finite sets, let A,B ∈ X, we define:
F(A,B) ≜ (#A)!
F satisfies (CR6) and (CR16) and does not satisfy (CR8).

• (CR2) + (CR8) ⇏ (CR1): Let X be a set of finite sets, let A,B ∈ X, we define:
F(A,B) ≜ #A+#B
F satisfies (CR2) and (CR8) and does not satisfy (CR1).

• (d-CR12X) ⇏ (d-CR12SX) (with X = L,R or n): Let X1 ≜ {1, 2, 3} and X2 ≜ {4, 5, 6}. Let x, y ∈ N,
we define d(x, y) = |x − y| (d is a distance on X1 and on X2). Then let ⟨x, y⟩, ⟨x′, y′⟩ ∈ X1 × X2. We define
F(⟨x, y⟩, ⟨x′, y′⟩) ≜ d(x, x′) + d(y, y′).
F satisfies (d-CR121) but not (d-CR12S1). Indeed:
Let x, x′, y, y′ ∈ X1, z, z

′ ∈ X2 such that d(x, x′) < d(y, y′). Then F(⟨x, z⟩, ⟨x′, z′⟩) = d(x, x′) + d(z, z′) <
d(y, y′) + d(z, z′) = F(⟨y, z⟩, ⟨y′, z′⟩) so F satisfies (d-CR121).
But d(1, 1) = 0 < 2 = d(1, 3) and still:

F(⟨1, 0⟩, ⟨1, 3⟩) = 3 > 2 = F(⟨1, 3⟩, ⟨3, 3⟩). So F does not satisfy (d-CR12S1).

• (d-CR17a) ⇏ (d-CR11): Pairs satisfies (d-CR17a) but not (d-CR11) (see Subsection ??).

• (CR16) ⇏ (CR9): Let X be a set of finite sets, let A,B ∈ X, we define:
F(A,B) ≜ #A
F satisfies (CR16) but not (CR9). Indeed :
With X = {1, 2, 3}:
F ({1, 2, 3}, {1, 2, 3}) = 3 > 0 = F (∅, {1}) and #({1, 2, 3}∆{1, 2, 3}) = 0 < 1 = #(∅∆{1})
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• Let F be a function, F can satisfy at the most one strong monotony: (d1-CR12SL), (d2-CR12SR) or
(dn-CR12Sn) with an unique n: Let N ∈ N and X a set of N -tuples. X can be expressed as X1 × ...×XN .
Let n,m ∈ J1, NK such as n ̸= m. Let dn be a distance on Xn and dm a distance on Xm. Suppose F satisfies
(dn-CR12Sn) and (dm-CR12Sm).
Let a, a′, b, b′ ∈ Xn such that dn(a, a

′) < dn(b, b
′) and x, x′, y, y′ such that dm(x, x′) > dm(y, y′). Let u, u′, v, v′ ∈ X

such that un = a (ie. the n-th term of u is a), um = x, u′n = a′, u′m = x′, vn = b, vm = y, v′n = b′, v′m = y′.
Then F (u, u′) < F (v, v′) and F (u, u′) > F (v, v′). Contradiction.

• (CR7Str) ⇒ ¬(CR1), ¬(d-CR17b): Let X be a set of finite sets and F be a pre-distance on X satisfying
(CR7Str). Let x ∈

⋃
X, let d be a distance on

⋃
X and suppose that #

⋃
X ⩾ 2, then Dmax(

⋃
X, d) > 0.

F (∅, {x}) = 0 (see above)
So F (∅, {x}) ̸= Dmax(

⋃
X, d) and F (∅, {x}) = 0 even though ∅ ̸= {x}. So F does not satisfy (d-CR17b) nor

(CR1).

• (CR1) + (CR2) + (CR8) ⇒ ¬(CR7Far), ¬(CR7Str): This is a direct consequence of proposition 12 in
Subsection 3.1.3.

• (d1-CR12L) and (d2-CR12R) are compatible. As well as (dn-CR12n) and (dm-CR12m) with n ̸= m:
Let N ∈ N and (⟨Xi, di⟩)i∈J1,NK, let b ≜ (di)i∈J1,NK, then Sumd (defined in lemma 1) satisfies (di-CR12i) for all
i ∈ J1, NK.

• (CR1), (CR2), (CR3), (CR5), (CR6), (CR8), (CR9), (CR16) and (CR18) are compatible: Delta

satifies all of these axioms (see Subsection 3.1.3).

• (CR1), (CR2), (CR3), (CR11), (CR17a) and (CR17b) are compatible: Haus satifies all of these axioms
(see Subsection ??).

• (CR1), (CR2), (CR3), (CR5), (CR17a) and (CR17b) are compatible: Inj satifies all of these axioms
(see Subsection ??).

A.2 Proofs of section 3

Proof. (Lemma 1)

We show that Sumd satisfies the three properties of distances:

Let n ∈ N, (⟨Xi, di⟩)i∈J1,nK be n metric spaces. Let x, y, z ∈ X.

• Sumd(x,y) = 0 ⇐⇒ ∀i ∈ J1, nK, d(xi, yi) = 0 ⇐⇒ ∀i ∈ J1, nK, xi = yi ⇐⇒ x = y

• Sumd(x,y) =

n∑
i=1

di(xi, yi) =

n∑
i=1

di(yi, xi) = Sumd(y,x)

• ∀i ∈ J1, nK, d(xi, yi) ⩽ d(xi, zi) + d(zi, yi) so:

Sumd(x,y) =

n∑
i=1

di(xi, yi) ⩽
n∑
i=1

di(xi, zi) +

n∑
i=1

di(zi, yi) = Sumd(x, z) + Sumd(z,y)

Proof of Delta being a distance:

Lemma 2 (⋆). For all sets A,B,C, we have A∆B ⊆ A∆C ∪ C∆B.

Proof. (Lemma 2)
Let A,B,C be three sets.

Let x ∈ A∆B, then we have:

14



• Either x ∈ A ∩Bc :

– If x ∈ C : x ∈ C ∩Bc ⊆ A∆C ∪ C∆B.

– Else x ∈ Cc : x ∈ A ∩ Cc ⊆ A∆C ∪ C∆B.

• Either x ∈ B ∩Ac :

– If x ∈ C : x ∈ C ∩Ac ⊆ A∆C ∪ C∆B.

– Else x ∈ Cc : x ∈ B ∩ Cc ⊆ A∆C ∪ C∆B.

Eitherways: x ∈ A∆C ∪ C∆B so A∆B ⊆ A∆C ∪ C∆B.

Proof. (Delta is a distance) We show that Delta satisfies the three properties of distances:

• If A = B then A ∩Bc = B ∩Ac = ∅ so A∆B = ∅ and #(A∆B) = 0.

Reciprocally, if #(A∆B) = 0 then A∆B = ∅ so A ∩Bc = B ∩Ac = ∅ so A ⊆ B and B ⊆ A so A = B.

• By symetry of the intersection and then union operators, A∆B = B∆A so #(A∆B) = #(B∆A).

• By the previous lemma A∆B ⊆ A∆C ∪ C∆B. So:

#(A∆B) ⩽ #(A∆C ∪ C∆B) ⩽ #(A∆C) + #(C∆B)

Proof. (Bin is a distance) Let X be a finite set, we order its elements:
⋃
X = {x1, x2, ...}. Let A,B,C ⊆ X.

• Bin(A,B) = 0 ⇐⇒ Numb(A) = Numb(B). Since the correspondance between 1S and Numb(S) for any subset S of
X is a bijection (each binary number corresponds to an unique element of N): Numb(A) = Numb(B) ⇐⇒ 1A =
1B ⇐⇒ A = B.

• Bin(A,B) = |Numb(A)− Numb(B)| = |Numb(B)− Numb(A)| = Bin(B,A).

• Bin(A,B) = |Numb(A)−Numb(B)| = |Numb(A)−Numb(C)+Numb(C)−Numb(B)| ⩽ |Numb(A)−Numb(C)|+|Numb(C)−
Numb(B)| = Bin(A,C) + Bin(C,B).

Proof of Inj being a distance:
For the proof we will need two lemmas:

Lemma 3 (⋆). Let ⟨X, d⟩ be a metric space and A,B ⊆ X | 0 < |A| ⩽ |B| eand f : A→ B, then:

Dist(d,A,B, f) = 0 ⇐⇒ f|A = Id

Proof. (Lemma 3)

If f|a = Id, then Dist(d,A,B, f) = Dist(d,A,B, Id) =
∑
a∈A

d(a, a) = 0

Reciprocally, if Dist(d,A,B, f) = 0: Suppose ∃a ∈ A | f(a) ̸= a then d(a, f(a)) > 0 so Dist(d,A,B, f) > 0. Con-
tradtiction. So ∀a ∈ A, f(a) = a ie. f|a = Id.

Proof. (Inj is identity respecting.)

Let ⟨X, d⟩ be a metric space and A,B ⊆ X:

Suppose A = B, then Id is an injective function from A to B and from B to A and by lemma 3:

Dist(d,A,B, Id) = 0 and Dist(d,B,A, Id) = 0

So Inj(A,B) = min
f :A↪→B

Dist(d,A,B, f) + min
f :B↪→A

Dist(d,B,A, f) + ||A| − |B|| = 0

Reciprocally, suppose Inj(A,B) = 0, then:
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
||A| − |B|| = 0
min

f :A↪→B
Dist(d,A,B, f) = 0

minf :B↪→A Dist(d,B,A, f) = 0

So |A| = |B|, which implies {f : A ↪→ B} ≠ ∅ and {f : B ↪→ A} ≠ ∅, then:
∃f1 ∈ {f : A ↪→ B} | Dist(d,A,B, f1) = 0 ie. Id ∈ {f : A ↪→ B} (by lemma 3). ie. A ⊆ B.
The same way: ∃f2 ∈ {f : B ↪→ A} | Dist(d,B,A, f2) = 0 ie. Id ∈ {f : B ↪→ A} ie. B ⊆ A.
So A = B.

Proof. (Inj is symmetric.)

Inj(A,B) = min
f :A↪→B

Dist(d,A,B, f) + min
f :B↪→A

Dist(d,B,A, f) + ||A| − |B||

= = min
f :B↪→A

Dist(d,B,A, f) + min
f :A↪→B

Dist(d,A,B, f) + ||B| − |A||

= Inj(B,A)

Lemma 4 (⋆). Let ⟨X, d⟩ be a metric space and A,B,C ⊆ X, φ : A ↪→ C,ψ : C → B, then:

Dist(d,A,B, ψ ◦ φ) ⩽ Dist(d,A,C, φ) + Dist(d,C,B, ψ)

Proof. (Lemma 4)

Let ⟨X, d⟩ be a metric space and A,B,C ⊆ X, φ : A ↪→ C,ψ : C → B.

Dist(d,A,B, ψ ◦ φ) =
∑
a∈A

d(a, ψ ◦ φ(a))

⩽
∑
a∈A

(d(a, φ(a)) + d(φ(a), ψ ◦ φ(a)))

=
∑
a∈A

d(a, φ(a)) +
∑

c∈φ(A)

d(c, ψ(c)) because φ is an injective function

⩽
∑
a∈A

d(a, φ(a)) +
∑
c∈C

d(c, ψ(c))

= Dist(d,A,C, φ) + Dist(d,C,B, ψ)

Proof. (Inj satisfies the triangle inequality.)

We note that:

(∗)
{

{ψ ◦ φ | φ : A ↪→ C,ψ : C ↪→ B} ⊆ {f : A ↪→ B}
{ψ ◦ φ | φ : B ↪→ C,ψ : C ↪→ A} ⊆ {f : B ↪→ A}

Then:
Inj(A,C) + Inj(C,B) = min

φ:A↪→C
Dist(d,A,C, φ) + min

φ:C↪→A
Dist(d,C,A, φ) + ||A| − |C||

+ min
ψ:C↪→B

Dist(d,C,B, ψ) + min
ψ:B↪→C

Dist(d,B,C, ψ) + ||C| − |B||

⩾ ||A| − |B||+ min
φ : A ↪→ C
ψ : C ↪→ B

(Dist(d,A,C, φ) + Dist(d,C,B, ψ))

+ min
ψ : B ↪→ C
φ : C ↪→ A

(Dist(d,B,C, ψ) + Dist(d,C,A, φ))

⩾ ||A| − |B||+ min
φ : A ↪→ C
ψ : C ↪→ B

Dist(d,A,B, ψ ◦ φ)

+ min
ψ : B ↪→ C
φ : C ↪→ A

Dist(d,B,A, ψ ◦ φ) (by lemma 4)

⩾ ||A| − |B||+ min
f :A↪→B

Dist(d,A,B, f) + min
ψ:B↪→A

Dist(d,B,A, f) (by (∗))

= Inj(A,B)
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Proof. (PointSetd is identity respecting and symmetric but does not satisfy the triangle inequality)

Let ⟨X, d⟩ be a metric space, A,B,C ∈ X:

• Suppose A = B:

Then ∀a ∈ A, a ∈ B so ∀a ∈ A, dist(a,B, d) = min{d(a, b)|b ∈ B} = d(a, a) = 0 as well as ∀b ∈ B, b ∈ A gives

∀b ∈ B, dist(b, A, d) = 0. So PointSetd(A,B) =
∑
a∈A

0 +
∑
b∈B

0 = 0.

Reciprocally, suppose PointSetd(A,B) = 0. Then:

– either both sums are empty, then A = ∅ = B so A = B.

– or one is empty and the other has only null terms. Then (wlog) A = ∅ and ∀b ∈ B, dist(b, A, d) = 0, but
dist(b, A, d) = min(∅) = Dmax(X, d) > 0. This case is impossible.

– or both sums are non-empty and have only null terms. Then ∀b ∈ B, dist(b, A, d) = 0 so ∀b ∈ B, ∃a ∈ A
| d(a, b) = 0 ie. a = b ie. b ∈ A so B ⊆ A. The same way: ∀a ∈ A, dist(a,B, d) = 0 gives us A ⊆ B so A = B.

So PointSetd respects identity.

• Symmetry:

PointSetd(A,B) =
∑
a∈A

dist(a,B, d) +
∑
b∈WB

dist(b, A, d)

=
∑
b∈B

dist(b, A, d) +
∑
a∈A

dist(a,B, d)

= PointSetd(B,A)

• In order to prove that PointSetd does not respect the triangle inequality, we use the following counter-example,
with X being a set of point of the space and d being the Manathan distance Man.

×2

×2

×2

A B

×2 ×4

A

C

B

PointSetMan(A,B) = 4× 2× 3 = 24
PointSetMan(A,C) + PointSetMan(C,B) = 2 + 2 + 1× 2 + 3× 4 + 1 + 1 = 20

So we have PointSetMan(A,B) > PointSetMan(A,C) + PointSetMan(C,B). PointSetMan does not respect the
triangle inequality.

Proof. (Pairs is symmetric but it is neither identity respecting, nor does it respect the triangle inequality.)

• The symmetry was proved in the proof of proposition 14.

• Let ⟨X, d⟩ be a metric space and z ∈ X. Pairsd({z}, ∅) =
∑

(x,y)∈{z}×∅

d(x, y) −
∑

(x,y)∈({z}∩∅)2
d(x, y) = 0 and

{z} ≠ ∅.

• For the triangle inequality, we use the following counter-example, with X being a set of points in the space and
d being Man:
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a1

a2

c C

b2

b1
A B

PairsMan(A,B) = Man(a1, b1) + Man(a1, b2) + Man(a2, b1) + Man(a2, b2) = 7 + 9 + 9 + 7 = 32
PairsMan(A,C) + PairsMan(C,B) = Man(a1, c) + Man(a2, c) + Man(c, b1) + Man(c, b2) = 4 + 4 + 5 + 5 = 18
So we have a case where PairsMan(A,B) > PairsMan(A,C) + PairsMan(C,B).

Proof. (ExtHam is a distance.)
Let X be a finite set set and ⟨Y, d⟩ be a finite metric space. Let f, g, h be functions from X to Y .

• If f = g: ExtHamd(f, g) =
∑
x∈X

d(f(x), g(x)) =
∑
x∈X

d(f(x), f(x)) = 0.

If ExtHamd(f, g) = 0 then ∀x ∈ X, d(f(x), g(x)) = 0, ie. ∀x ∈ X, f(x) = g(x), ie. f = g.

• ExtHamd(f, g) =
∑
x∈X

d(f(x), g(x)) =
∑
x∈X

d(g(x), f(x)) = ExtHamd(g, f).

• ExtHamd(f, g) =
∑
x∈X

d(f(x), g(x)) ⩽
∑
x∈X

(d(f(x), h(x)) + d(h(x), g(x)) = ExtHamd(f, h) + ExtHamd(h, g).

Proof. (Plus is a distance.)
Let X be a set and d, d′ be two distances on X. Let x, y, z ∈ X

• Since d, d′ are positive, Plusd,d′(x, y) = 0 ⇐⇒ d(x, y) = 0 and d′(x, y) = 0 ⇐⇒ x = y.

• Plusd,d′(x, y) = d(x, y) + d′(x, y) = d(y, x) + d′(y, x) = Plusd,d′(y, x).

• d(x, y) ⩽ d(x, z)+d(z, y) and d′(x, y) ⩽ d′(x, z)+d′(z, y) so Plusd,d′(x, y) = d(x, y)+d′(x, y) ⩽ d(x, z)+d(z, y)+
d′(x, z) + d′(z, y) = Plusd,d′(x, z) + Plusd,d′(z, y).

Proof. (Lex is a distance.)
Thanks to the Remark 1, Dmax(X, d)× d is a distance. Then by proposition 10, since Lexd,d′ = PlusDmax(X,d)×d,d′ , it is
a distance.

Proof. (Proposition 12
Let X be a finite set. We already know that Delta satisfies (CR1), (CR2) and (CR8) on Pow(X). Let’s show that if a
function F satisfies (CR1), (CR2) and (CR8) on Pow(X), then F = Delta.

Let F : Pow(X)× Pow(X) → [0,∞) be a function satisfying (CR1), (CR2) and (CR8) on Pow(X).

Let A,B ⊆ X. Since X is finite, A and B are also finite, so we can proceed by dobble induction on #A and #B:

• If #A = 0, then A = ∅ and:

– If #B = 0, then B = ∅ and A = ∅ = B so, since F is identity respecting, F (A,B) = 0 = #(A∆B).

– Let m ∈ N, such that ∀B ∈ Pow(X), |B| = m⇒ F (A,B) = |A∆B|:
If |B| = m+ 1, then ∃B′, x | B = B′ ⊎ {x} and #B′ = m,
so F (A,B) = F (B,A) = F (B′ ⊎ {x}, A) (F is symmetric).
and x /∈ B′, x /∈ ∅ = A so {x} ∩ (A ∪B) = ∅ and then, since F satisfies (CR8) :
F (A,B) = F (B′ ⊎ {x}, A) = F (B′, A) + 1 = F (A,B′) + 1 = #(A∆B′) + 1.
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Then:
A∆B = (A \B) ∪ (B \A)

= (∅ \B) ∪ (B \ ∅)
= ∅ ∪B
= B
= B′ ⊎ {x}

A∆B′ = (A \B′) ∪ (B′ \A)
= (∅ \B′) ∪ (B′ \ ∅)
= ∅ ∪B′

= B′

So #(A∆B) = #(A∆B′) + 1.
So F (A,B) = #(A∆B).

So ∀m ∈ N,∀B ∈ Pow(X),#B = m⇒ F (∅, B) = |∅∆B|,
ie. ∀B ∈ Pow(Val(A)), F (∅, B) = #(∅∆B).

• Let m ∈ N such that ∀(A,B) ∈ (Pow(Val(X))2,#A = n⇒ F (A,B) = #(A∆B):
If #A = n+ 1 then ∃A′, x | A = A′ ⊎ {x} and F (A,B) = F (A′ ⊎ {x}, B).

– If x /∈ B, then F (A,B) = F (A′, B) + 1 = |A′∆B|+ 1 and (since x /∈ A′):
A∆B = (A \B) ∪ (B \A)

= (A′ \B) ∪ (B \A′) ∪ {x}
= (A′∆B) ⊎ {x}

So #(A∆B) = #A′∆B + 1.
So F (A,B) = #(A∆B).

– If x ∈ B, then ∃B′ | B = B′ ⊎ {x} et F (A,B) = F (A′ ⊎ {x}, B′ ⊎ {x}).
We define C = (A′ ∩B′) ∪ {x}. Since F is identity respecting, F (C,C) = 0.
Then we can add one by one the elements of (A′ ⊎ {x}) \ C to C:
F (A′ ⊎ {x}, C) = F (C,C) + #((A′ ⊎ {x}) \ C)

= 0 +#(A′ \B′)

(by a direct induction applying (CR8))
The same way, by adding the elements of (B′ ⊎ {x}) \ C to C:
F (A′ ⊎ {x}, B′ ⊎ {x}) = F (B′ ⊎ {x}, A′ ⊎ {x})

= F (A′ ⊎ {x}, C) + #((B′ ⊎ {x}) \ C) (1)
= #(A′ \B′) + #(B′ \A′)
= #(A′∆B′) (2)
= #(A∆B)

(1): by a direct induction applying (CR8)
(2): Because (A′ \B′) ∩ (B′ \A′) = ∅
So F (A,B) = #(A∆B).

So ∀n ∈ N,∀(A,B) ∈ (Pow(Val(A)))2, |A| = n⇒ F (A,B) = #(A∆B).
ie. ∀(A,B) ∈ (Pow(Val(A)))2, F (A,B) = #(A∆B).

So if F satisfies (CR1), (CR2) and (CR8), F is necessarily then cardinal of the symmetric difference Delta.

Proof. (Proposition 13)
The exact same proof as when K was equal to 1 is possible, adding K instead of 1 at each stepp.

Proof. (Proposition 14.)
Let ⟨X, d⟩ be a metric space, let F be a function from Pow(X) to R. Suppose that F satisfies (CR1W ), (CR2), (CR7Str)
and (d-CR17a). Then, let A,B ∈ Pow(X):
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F (A,B) = F (A ∩B,B) +
∑

x∈A\B

F ({x}, B) (1)

= F (A ∩B,A ∩B) +
∑

x∈B\A

F ({x}, A ∩B) +
∑

x∈A\B

F ({x}, B) (2)

= 0 +
∑

x∈B\A

F (A ∩B, {x}) +
∑

x∈A\B

F (B, {x}) (3)

=
∑

x∈B\A

(
F (∅, {x}) +

∑
y∈A∩B

F ({y}, {x})
)
+

∑
x∈A\B

(
F (∅, {x}) +

∑
y∈B

F ({y}, {x})
)

(4)

=
∑

x ∈ B \ A
y ∈ A ∩ B

F ({y}, {x}) +
∑

x ∈ A \ B
y ∈ B

F ({y}, {x}) (5)

=
∑

x ∈ B \ A
y ∈ A ∩ B

d(x, y) +
∑

x ∈ A \ B
y ∈ B

d(x, y) (6)

=
∑

x ∈ B \ A
y ∈ A ∩ B

d(x, y) +
∑

x ∈ A \ B
y ∈ A ∩ B

d(x, y) +
∑

x ∈ A \ B
y ∈ B \ A

d(x, y)

=
∑

(x,y)∈A×B

d(x, y)−
∑

(x,y)∈(A∩B)2

d(x, y)

= Pairsd(A,B)

(1): By induction, using (CR7Far) on each element of A \B.
(2): By induction, using (CR7Far) on each element of B \A.
(3): By (CR1W ) and (CR2).
(4): By induction, using (CR7Str) on each element of A ∩B, which is possible because ∀x ∈ B \ A, x /∈ A ∩B, and on
each element of B, which is possible because ∀x ∈ A \B, x /∈ B.
(5): ∀x ∈ X,F (∅, {x}) = 0 (proposition 1) (6): By (CR17a).
So any function satisfying (CR1W ), (CR2), (CR7Str) and (d-CR17a) ond ⟨X, d⟩ has to be Pairsd. But does Pairsd
satisfy all those axioms ?

Let A,B ∈ Pow(X), z ∈ X \ (A ∪B):

• (CR1W ) :

F (A,A) =
∑

(x,y)∈A×A

d(x, y)−
∑

(x,y)∈(A∩A)2

d(x, y) =
∑

(x,y)∈A×A

d(x, y)−
∑

(x,y)∈A×A

d(x, y) = 0

• (CR2) :

Pairsd(A,B) =
∑

(x,y)A×B

d(x, y)−
∑

(x,y)∈(A∩B)2

d(x, y)

=
∑

(x,y)∈A×B

d(y, x)−
∑

(x,y)∈(B∩A)2

d(x, y)

=
∑

(x,y)∈B×A

d(x, y)−
∑

(x,y)∈(B∩A)2

d(x, y)

= Pairsd(B,A)

• (CR7Str) :

Pairsd(A ∪ {z}, B) =
∑

(x,y)(A∪{z})×B

d(x, y)−
∑

(x,y)∈((A∪{z})∩B)2

d(x, y)

=
∑

(x,y)A×B

d(x, y) +
∑

(x,y){z}×B

d(x, y)−
∑

(x,y)∈A∩B)2

d(x, y) (1)

= Pairsd(A,B) +
∑

(x,y){z}×B

d(x, y)−
∑

(x,y)∈({z}∩B)2

d(x, y) (2)

= Pairsd(A,B) + Pairsd({z}, B)

(1): z /∈ A ∪B, so (A ∪ {z}) ∩B = A ∩B.

(2): {z} ∩B = ∅, so
∑

(x,y)∈({z}∩B)2

d(x, y) = 0.
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• (d-CR17a) : Let a, b ∈ X :
If a = b :
Pairsd({a}, {b}) =

∑
(x,y)∈{a}×{b}

d(x, y)−
∑

(x,y)∈({a}∩{b})2
d(x, y) = d(a, b)− d(a, b) = 0 = d(a, b)

If a ̸= b :
Pairsd({a}, {b}) = d(a, b)− 0 = d(a, b)

Pairsd satisfies the four axioms.
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B Other results

B.1 Other axioms

B.1.1 Axioms on pre-distances

Definition 36 (⋆). Let X be a set and F be a pre-distance on X. We define:
Let D be a pre-distance on X,
(D-CR9) : (D-monotony) ∀A,B ∈ X, D(A,B) < D(A′, B′) ⇒ F (A,B) < F (A′, B′)

(D-CR9) seems meaningless by itself, but once a specific distance D is defined on X, with interesting monotony
properties, then (D-CR9) is a way to evaluate if these properties are preserved by F .

B.1.2 Axioms on pre-distances between sets

Definition 37 (⋆). Let X be a set of sets and F a pre-distance on X. We define the following axioms:

(CR7Far) : (Far decomposability)
∀A,B ∈ X, ∀x ∈

⋃
X, F ({x}, B) > F (A,B) ⇒ F (A ∪ {x}, B) = F (A,B) + F ({x}, B)

(CR9) : (∆-monotony)
∀A,A′, B,B′ ∈ X, #(A∆B) < #(A′∆B′) ⇒ F (A,B) < F (A′, B′)

(CR18) : (Intersection indifference)
∀A,B ∈ X, F (A,B) = F (A \B,B \A)

B.1.3 Axioms on pre-distances between subsets of a finite metric space

Definition 38 (⋆). Let X be a set. We define the following predicate Far:
Let x ∈ X, A ⊆ X, B ⊆ X, d a pre-distance on X:

Far(x,A,B, d) ⇐⇒ ∀y ∈ A,∀z ∈ B, d(y, z) < d(x, z)

Far(x,A,B, d) means that x is further away from B than A is far from B, element by element.

Definition 39 (⋆). Let ⟨X, d⟩ be a finite metric space. We define the following axioms:

(d-CR4W ) : (Weak elementary d-monotony)

∀(x, x′, y, y′) ∈ X4, ∀A ⊆ X,∀B ⊆ X,
(#{x, x′, y, y′} = 4 ∧ {x, x′, y, y′} ∩ (A ∪B) = ∅ ∧ d(x, x′) < d(y, y′))

⇒ F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {y}, B ∪ {y′})

(d-CR4Far) : (Far (elementary) d-monotony)

∀(x, x′, y, y′) ∈ X4, ∀A ⊆ X,∀B ⊆ X,
d(x, x′) < d(y, y′)
Far(y,A ∪ {x}, B ∪ {x′, y′})
Far(y′, B ∪ {x′}, A ∪ {x, y})

 ⇒ F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {y}, B ∪ {y′})

(d-CR10) : (Global d-monotony)

∀(A,A′, B,B′) ∈ (Pow(X))4,
∑

(a,b)∈A×B

d(a, b) <
∑

(a,b)∈A′×B′

d(a, b) ⇒ F (A,B) < F (A′, B′)

(d-CR15) : (d-match-represented)
∀A ⊆ X,∀B ⊆ X,
∃A′ ⊆ A,∃B′ ⊆ B such that #A′ = #B′ = min(#A,#B) and we can number the elements of A′ and B′ so that

F (A,B) =

#A′∑
i=1

d(ai, bi)
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(d-CR17b) : (d-void maximality)
∀a ∈ X, F ({a}, ∅) = Dmax(X, d)

B.1.4 Axioms on pre-distances on cartesian products

This subsection allows us to study pre-distances between pairs and tuples of a cartesian product between sets,
considering that we already know a pre-distance on each set, or on one of them.

Definition 40 (⋆). Let ⟨X, d⟩ be a finite metric space and Y be a set. We define:

(d-CR12SL) / (CR12SR) / (CR12Sn) : (Strong left-monotony, strong right-monotony, strong n-monotony).
(Strong left-monotony):
∀(x, x′, y, y′) ∈ X4, ∀(a, a′, b, b′) ∈ Y 4, d(x, x′) < d(y, y′) ⇒ F (⟨x, a⟩, ⟨x′, a′⟩) < F (⟨y, b⟩, ⟨y′, b′⟩)

B.1.5 Axioms on pre-distances between pairs of type (element,set)

The axioms of this section will specifically be useful to study pre-distances between S5 Kripke semantics, as we
will see it in Section 4.

Definition 41 (⋆). Let X be a set of sets. We define:

Let D be a pre-distance on X,
(D-CR13) : (Union D-monotony)
∀(A,A′, B,B′) ∈ X4, ∀(x, x′, y, y′) ∈ (∪X)4,
D(A ∪ {x}, B ∪ {y}) < D(A′ ∪ {x′}, B′ ∪ {y′}) ⇒ F (⟨x,A⟩, ⟨y,B⟩) < F (⟨x′, A′⟩, ⟨y′, B′⟩)

(CR14) : (Membership distinction)
∀(A,B) ∈ X2, ∀(x, x′, y, y′) ∈ (

⋃
X)4,

x ∈ A, x′ /∈ A, y ∈ B, y′ /∈ B ⇒


F (⟨x,A⟩, ⟨y,B⟩) < F (⟨x′, A⟩, ⟨y,B⟩)
F (⟨x,A⟩, ⟨y,B⟩) < F (⟨x,A⟩, ⟨y′, B⟩)
F (⟨x′, A⟩, ⟨y′, B⟩) < F (⟨x′, A⟩, ⟨y,B⟩)
F (⟨x′, A⟩, ⟨y′, B⟩) < F (⟨x,A⟩, ⟨y′, B⟩)

B.1.6 Relations between axioms

Proposition 17 (⋆). We have the following relations between axioms:

Implications:

• (CR9) ⇒ (CR16)

• (d-CR12SX) ⇒ (d-CR12X) (with X = L,R or n)

Independences:

• (d-CR12X) ⇏ (d-CR12SX) (with X = L,R or n)

• (CR16) ⇏ (CR9)

Incompatibilities:

• Let F be a function, F can satisfy at the most one strong monotony: (d1-CR12SL) ,(d2-CR12SR) or (dn-
CR12Sn) with an unique n.

• (CR7Str) ⇒ ¬(d-CR17b)

• (CR1) + (CR2) + (CR8) ⇒ ¬(CR7Far)

Compatibilities:
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• (CR12L) and (CR12R) are compatible. As well as (CR12n) and (CR12m) with n ̸= m.

• (CR1), (CR2), (CR3), (CR5), (CR6), (CR8), (CR9), (CR16) and (CR18) are compatible.

• (CR1), (CR2), (CR3), (CR11), (CR17a) and (d-CR17b) are compatible.

• (CR1), (CR2), (CR3), (CR5), (CR17a) and (d-CR17b) are compatible.

(The proof is to be found with the proofs of Section 2)

B.2 Further study of the impossibility result on (CR4)

Proposition 18 (⋆). (Eucl-CR4W ) cannot be satisfied (if Eucl is the euclidian distance in a geometric space).
(Ham-CR4W ) cannot be satisfied.

Proof. We show that if F satisfy (d-CR4W) for some distance d on X, then we can find a counter example similar as
the one for (d-CR4).

Let ⟨X, d be a metric space, suppose F satisfies (d-CR4W), let x, y, y
′ ∈ X all distinct such that d(x, x′) < d(x, y′) and

such that there exists z and z′ such that:

|{x, x′, y′, z, z′}| = 5 and d(x, x′) < d(z, z′) and d(z, z′) < d(x, y′).

Let A,B ⊆ X such that {x, x′, y′, z, z′} ∩ (A ∪B) = ∅.

Then d(x, x′) < d(z, z′) gives F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {z}, B ∪ {z′})

And d(z, z′) < d(x, y′) gives F (A ∪ {z}, B ∪ {z′}) < F (A ∪ {x}, B ∪ {y′})

So, by transitivity of ”<”, we have F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {x}, B ∪ {y′}).

A soon as such z and z′ exist, we then have:

d(x, x′) < d(x, y′) ⇒ F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {x}, B ∪ {y′})

We find some valuations to have a counter-example for (Ham-CR4W):

We define x = (0, 0, 0), x′ = (0, 0, 1), y′ = (1, 1, 1). We then have: Ham(x, x′) = 1 < 3 = Ham(x, y′). So we want: z and
z′ such that: 1 < Ham(z, z′) < 3, ie. Ham(z, z′) = 2. z = (1, 0, 0), z′ = (0, 1, 0) suits.

Finally, with A = {1, 1, 0} B = {0, 1, 1}, we then have:

(|{x, x′, z, z′}| = 4 ∧ {x, x′, z, z′} ∩ (A ∪B) = ∅ ∧ d(x, x′) < d(z, z′)) so F (A ∪ {x}, B ∪ {x′}) < F (A ∪ {z}, B ∪ {z′}).

And: (|{x, y′, z, z′}| = 4 ∧ {x, y′, z, z′}∩(A∪B) = ∅ ∧ d(z, z′) < d(x, y′)) so F (A∪{z}, B∪{z′}) < F (A∪{x}, B∪{y′}).

We reach a contradiction again.

Remark 4 : We will always consider #X ⩾ 3. If #X < 3, (d-CR4) can be satified easily. In cases #X = 0 and
#X = 1, d(x, y) > 0 never occurs, so neither does d(x, x′) < d(y, y′). (d-CR4) is then trivially verified for any distance
d on X. In the case #X = 2, d(x, x′) < d(y, y′) can not occur either.

Remark 5 : In fact the satisfiability of (d-CR4) strongly depends on X. We first consider that we can take any
point in X that we need to find a counter-example. We later specify the conditions on X to reach the impossibility of
(d-CR4).

I tried to generalise this result to more distances in 2 different manners:

Firstly, by generalising the previous proof:
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Definition 42 (⋆). Let ⟨X, d⟩ be a metric space, let x1, x2, x3, x4 be elements of X. If d(x1, x3) < d(x1, x4) and
d(x2, x3) > d(x2, x4), we call {x1, x2, x3, x4} a lozenge of X.

Proposition 19 (⋆). Let ⟨X, d⟩ be a metric space. If ⟨X, d⟩ has a lozenge, then (d-CR4) cannot be satisfied.

Proof. This is exactly the Remark 3.

Secondly I used the intuition that CR4 cannot be satisfied in a space of dimension two or more, because our previous
counter-example will still apply. In order to do this, we need to define a dimension for finite metric spaces.

Definition 43 (⋆). We name grid of dimension n and length m the set Gnm of all the vectors of dimension n with
all elements in J1,mK. An element of Gnm is then called a point of the grid.

Definition 44 (⋆). Let n,m be two natural numbers, let v be a vector of n elements of (0,∞). We define the
extended manhattan distance on Gnm as

ExManv : (Gnm)2 −→ [0,∞)

(g, h) 7−→
n∑
i=1

vi × |gi − hi|

I then inject the metric space into the grid structure, so that I can easely transfer the nice properties of the grid to the
metric space.

Definition 45 (⋆). Let ⟨X, d⟩ be a metric space. We say that ⟨X, d⟩ is straight if there exist n,m ∈ N such that
there exists a surjective function f from X to Gnm and a strictly positive vector v such that ∀(x, y) ∈ X2, d(x, y) =
ExManv(f(x), f(y)).
Besides, if for all n′ > n, there is no surjective function from X to Gn

′

m′ for any m′, then n is the dimension of
⟨X, d⟩.
If v = k × 1 with k ∈ R, ⟨X, d⟩ is called regular.

Proposition 20 (⋆). Let ⟨X, d⟩ be a metric space. If, ⟨X, d⟩ is straight, then (d-CR4) can be satisfied if and only
if ⟨X, d⟩ is of dimension 2 or more.

Proof. If ⟨X, d⟩ is a straight metric space of dimension n ≥ 2, then for all m ≥ 1, Gnm has a lozenge, and so does
⟨X, d⟩.

B.3 Other pre-distances

I studied other pre-distances in order to find pre-distances with specific properties.

Definition 46 (⋆). Let ⟨X, d⟩ be a metric space. We define the following functions on Pow(X) × Pow(X), such
that ∀A,B ∈ Pow(X): ( with min(∅) = 0 )

• Nijd(A,B) ≜ |#A−#B|+

 min
f :A↪→B

Dist(d,A,B, f) si |A| ⩽ |B|

min
f :B↪→A

Dist(d,B,A, f) otherwise

Definition 47 (⋆). Let ⟨X, d⟩ be a metric space. We define the following functions on Pow(X) × Pow(X), such
that ∀A,B ∈ Pow(X): ( with min(∅) = Dmax(X, d) )

• WSDd(A,B) ≜
∑

(x,y)∈(A∆B)2

d(x, y) + Drast(A,B) (Weighted Symmetric Difference)

• MaxSumd(A,B) ≜
∑

(x,y)∈A×B

d(x, y) (Maximal Sum)
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• Maxd(A,B) ≜ max
(x,y)∈A×B

d(x, y)

Proposition 21 (⋆). Let ⟨X, d⟩ be a metric space, Nijd, WSDd, MaxSumd, Maxd are not distances.

Proof. (Nijd is identity respecting, symmetric but does not respect the triangle inequality)

Let ⟨X, d⟩ be a metric space and A,B,C ⊆ X.

• Suppose A = B, then |A| ⩽ |B| so
Nijd(A,B) = min

f :A↪→B
Dist(d,A,B, f)

= Dist(id, A,B, f)

=
∑
a∈A

d(a, a) + |B| − |A|

= 0

Reciprocally, suppose Nijd(A,B) = 0, then:

– Either |A| > |B| and ∃f : B ↪→ A | Dist(d,B,A, f) = 0 , so |A| − |B| = 0 so |B| = |A|. Contradiction. This
cannot append.

– Or |A| ⩽ |B| and ∃f : A ↪→ B | Dist(d,A,B, f) = 0,
so |B| − |A| = 0 so |B| = |A|,
and

∑
a∈A

d(a, f(a)) = 0 ie. ∀a ∈ A, d(a, f(a)) = 0 ie. ∀a ∈ A, a = f(a) ie. f = Id.

So B ⊆ A and |B| = |A|. So A = B.

• If |A| ≠ |B|, then:

– Either |A| < |B|, then Nijd(A,B) = min
f :A↪→B

Dist(d,A,B, f) = Nijd(B,A)

– Or |A| > |B|, then Nijd(A,B) = min
f :B↪→A

Dist(d,B,A, f) = Nijd(B,A)

If |A| = |B|: then the set of injectives functions from A to B is exactly the set of bijections from A to B, and the
set of their inverse functions is exactly the set of bijections from B to A. Since d is a distance, d is symmetric, so
minf :A↪→B Dist(d,A,B, f) = minf :B↪→A Dist(d,B,A, f). Plus |A| − |B| = 0 = |B| − |A|.
So Nijd(A,B) = min

f :A↪→B
Dist(d,A,B, f) = min

f :B↪→A
Dist(d,B,A, f) = Nijd(B,A).

• In order to show that Nijd does not respect the triangle inequality, we use the following counter-example, with
X being a set of points in space and d being the Manhattan distance Man (number of segments between the two
points):

c
C

a1

a2 a3
A

b1 b2

b3 B

Nijd(A,B) = 6 + 8 + 6 = 20
Nijd(A,C) = 3 + 2 = 5
Nijd(C,B) = 3 + 2 = 5

So Nijd(A,B) > Nijd(A,C) + Nijd(C,B)
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Proposition 22 (⋆). Let ⟨X, d⟩ be a metric space, Nijd is a distance between subsets of X with the same cardinality.

Proof. Let ⟨X, d⟩ be a metric space. Let A,B,C ⊆ X. Suppose wlog #A ⩽ #B (because Nijd is symmetric). Then
we can be in three different casess:

• #A ⩽ #B ⩽ #C

• #A ⩽ #C ⩽ #B

• #C ⩽ #A ⩽ #B

In the case where #A ⩽ #C ⩽ #B, we have:

{ψ ◦ φ | φ : A ↪→ C,ψ : C ↪→ B} ⊆ {f : A ↪→ B} (1)

Nijd(A,C) + Nijd(C,B) = min
φ:A↪→C

Dist(d,A,C, φ) + min
ψ:C↪→B

Dist(d,C,B, ψ)

= min
φ : A ↪→ C
ψ : C ↪→ B

(
∑
a∈A

d(a, φ(a)) + #C −#A+
∑
c∈C

d(c, ψ(c)) + #B −#C)

⩾ min
φ : A ↪→ C
ψ : C ↪→ B

(
∑
a∈A

d(a, φ(a)) +
∑

c∈φ(A)

d(c, ψ(c))) + #B −#A

= min
φ : A ↪→ C
ψ : C ↪→ B

∑
a∈A

(d(a, φ(a)) + d(φ(a), ψ(φ(a))) + #B −#A

⩾ min
φ : A ↪→ C
ψ : C ↪→ B

∑
a∈A

(d(a, ψ(φ(a))) + #B −#A

⩾ minf :A↪→B

∑
a∈A

d(a, f(a) + #B −#A ( with (1) )

= Nijd(A,B)

Finally, in the special case where all the considered subsets of X have the same cardinality, we are always in the first
case, so Nijd satisfies the triangle inequality for subsets of same cardinality.

Proof. (WSD is identity respecting, symmetric, but does respect the triangle inequality.)
Let ⟨X, d⟩ be a metric space and A,B,C ⊆ X.

• Suppose WSDd(A,B) = 0. All the summed terms are positives, so Drast(A,B) = 0, ie. A = B.

Reciprocally, suppose A = B. Then Drast(A,B) = 0. Plus, A∆B = ∅ so the sum is empty. So WSDd(A,B) = 0.

• A∆B = B∆A and Drast is symmetric because it is a distance.

WSDd(A,B) =
∑

(a,b)∈(A∆B)2

d(a, b) + Drast(A,B)

=
∑

(a,b)∈(B∆A)2

d(a, b) + Drast(B,A)

= WSDd(A,B)

• Counter-example for the triangle inequality (with d = Ham and X = Val({p1, p2, p3})):

We define: v = (0, 0, 0), u = (0, 1, 0), w = (0, 1, 1) and U = {u}, V = {u, v}, W = {u,w}.

Then WSDHam(V,W ) = Ham(v, v) + Ham(w,w) + Ham(v, w) + Ham(w, v) + Drast(A,B) = 0 + 2× 2 + 1 = 5

And: WSDHam(V,U) + WSDHam(U,W ) = Ham(v, v) + Drast(V,U) + Ham(w,w) + drast(U,W ) = 0 + 1 + 0 + 1 = 2.

So we have a case where WSDHam(V,W ) > WSDHam(V,U) + WSDHam(U,W ).

Proof. (MaxSum is symmetric but it is neither identity respecting, nor does it respect the triangle inequality.)

Let ⟨X, d⟩ be a metric space and A,B ⊆ X.

27



• MaxSumd(A,B) =
∑

(x,y)∈A×B

d(x, y) =
∑

(x,y)∈A×B

d(y, x) =
∑

(x,y)∈B×A

d(x, y) = MaxSumd(B,A)

• LetX be {1, 2, 3} and A be {1, 2}, we define d(x, y) ≜ |x−y|, then MaxSumd(A,A) = |1−1|+|1−2|+|2−1|+|2−2| =
2 > 0.

• With the same example as below, MaxSumd(A,A) = 2 > 0 = MaxSumd(A, ∅) + MaxSumd(∅, A).

Proof. (Max is symmetric and satisfies the triangle inequality but it is not identity respecting.)

Let ⟨X, d⟩ be a metric space and A,B,C ⊆ X.

• Maxd(A,B) = max(a,b)∈A×B d(a, b) = max(a,b)∈A×B d(b, a) = max(a,b)∈B×A d(a, b) = Maxd(B,A).

• If A,B,C are not empty:
Maxd(A,C) + Maxd(C,B) = max

(a,c)∈A×C
d(a, c) + max

(c,b)∈C×B
d(c, b) and Maxd(A,B) = max

(a,b)∈A×B
d(a, b) so there exist

a1 ∈ A, b1 ∈ B such that Maxd(A,B) = d(a1, b1) and for all c1 ∈ C, Maxd(A,C) = max
(a,c)∈A×C

d(a, c) ⩾ d(a1, c1)

and Maxd(C,B) = max
(c,b)∈C×B

d(c, b) ⩾ d(c1, b1). So Maxd(A,C) + Maxd(C,B) ⩾ d(a1, c1) + d(c1, b1) ⩾ d(a1, b1) =

Maxd(A,B).

If C is emply:
Maxd(A,C) + Maxd(C,B) = 2Dmax(X, d) and Maxd(A,B) ⩾ Dmax(X, d) so Maxd(A,C) + Maxd(C,B) ⩾ Maxd(A,B).

If C is not empty but A is (or, the same way, if C is not empty but B is):
Maxd(A,C) + Maxd(C,B) = Dmax(X, d) + Maxd(C,B) ⩾ Dmax(X, d) ⩾ Maxd(A,B).

• Let X be {1, 2, 3} and A be {1, 2}, we define d(x, y) ≜ |x− y|, then Maxd(A,A) = |2− 1| = 1 > 0.
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B.4 Full axiomatic study and proofs of the axiomatic study

Figure 7: Full axiomatic study of all the introduced pre-distances.
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Proofs:

(CR1), (CR2) and (CR3) were already studied previously for each pre-distance.

B.4.1 (CR5)

Proof. (Drast satisfies (CR5))
Let X be a set of sets, A,A′, B ∈ X such that A ⊆ B and A′ ⊆ B and #A = #A′:
If #A = #B, then A = A′ = B so Drast(A,B) = 0 = Drast(A′, B).
If #A < #B then A ̸= B and #A′ < #B so A′ ̸= B. So Drast(A,B) = drast(A′, B)

Proof. (Delta satisfies (CR5))
Let X be a set of sets, A,A′, B ∈ X such that A ⊆ B and A′ ⊆ B and #A = #A′:
Delta(A,B) = #(A∆B) = #B −#A = #B −#A′ = Delta(A′, B).

Proof. (Bin does not satisfy (CR5))
Let X = {x1, x2, x3}, B = X,A = {x1, x2}, A′ = {x1, x3},#A = #A′:
Bin(A,B) = 1× 4 + 1× 2 + 0 = 6
Bin(A′, B) = 1× 4 + 0 + 1× 1 = 5 ̸= Bin(A,B)

Proof. (Inj satisfies (CR5))
Let X be a set of sets, d be a distance on

⋃
X, A,A′, B ∈ X such that A ⊆ B and A′ ⊆ B and #A = #A′:

If #A < #B:
Injd(A,B) = min

f :A↪→B
Dist(d,A,B, f) + min

f :B↪→A
Dist(d,B,A, f) + |#A−#B| × Dmax(X, d)

= Dist(d,A,B, Id) + 0 + |#A−#B| × Dmax(X, d)
= |#A−#B| × Dmax(X, d)
= |#A′ −#B| × Dmax(X, d)
= Injd(A

′, B)

If #A = #B then A =

A′ = B so Injd(A,B) = 0 = Injd(A
′, B) because Injd is a distance.

Proof. (Haus does not satisfy (CR5))
We use as counter-example: A = {1, 2}, A′ = {1, 5}, B = {1, 2, 5}, X = {A,A′, B}, d(n,m) ≜ |n −m|. Hausd(A,B) =
max(max

a∈A
min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)) = max{0, 0, 0, 0, 3} = 3

Hausd(A
′, B) = max(max

a∈A′
min
b∈B

d(a, b),max
b∈B

min
a∈A′

d(a, b)) = max{0, 0, 0, 1, 0} = 1 ̸= Hausd(A,B)

Proof. (Nij satisfies (CR5))

Let X be a set of sets, d be a distance on
⋃
X, A,A′, B ∈ X such that A ⊆ B and A′ ⊆ B and #A = #A′:

If #A < #B:
Nijd(A,B) = min

f :A↪→B
Dist(d,A,B, f) + |#A−#B|

= Dist(d,A,B, Id) + |#A−#B|
= |#A−#B|
= |#A′ −#B|
= Nijd(A

′, B)

If #A = #B then A = A′ = B so Nijd(A,B) = 0 =

Nijd(A
′, B) because Nijd satisfies (CR1).

Proof. (PointSet does not satisfy (CR5))
Same counter-example as for Haus.

Proof. (WSD does not satisfy (CR5))
We use as counter-example: A = {2, 3}, A′ = {1, 4}, B = {1, 2, 3, 4}, X = {A,A′, B}, d(n,m) ≜ |n−m|.
PointSetd(A,B) = |1− 4|+ |4− 1| = 6 ̸= 2 = |2− 3|+ |3− 2| = PointSetd(A

′, B)

Proof. (MaxSum does not satisfy (CR5))
Same counter-example as for Haus.
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Proof. (Max does not satisfy (CR5))
We use as counter-example: A = {1}, A′ = {2}, B = {1, 2, 3}, X = {A,A′, B}, d(n,m) ≜ |n −m|: Maxd(A,B) = 2 ̸=
1 = Maxd(A

′, B).

Proof. (Pairs does not satisfy (CR5))
Same counter-example as for Haus.

B.4.2 (CR6)

Proof. (Drast satisfies (CR6))

Let X be a set of sets, A,B ∈ X, x, y ∈
⋃
X such that {x, y} ∩ (A ∪B) = ∅:

Drast(A ∪ {x}, B) = 1 = Drast(A ∪ {y}, B)

Proof. (Delta satisfies (CR6))

Let X be a set of sets, A,B ∈ X, x, y ∈
⋃
X such that {x, y} ∩ (A ∪B) = ∅:

Delta(A ∪ {x}, B) = #((A ∪ {x})∆B)
= #(A∆B) + 1 (because x /∈ A∆B and x ∈ (A ∪ {x})∆B)
= #((A ∪ {y})∆B)
= Delta(A ∪ {y}, B)

Counter-example 0: A = {1}, B = {2}, x = 3, y = 4, X = {A,B, {1, 3}, {1, 4}}, d(n,m) ≜ |n−m|.

Proof. (Bin does not satisfy (CR6))
Counter-example 0.

Proof. (Haus does not satisfy (CR6))
Counter-example 0.

Proof. (Nij does not satisfy (CR6))
Counter-example with: A = {10}, B = {2}, x = 3, y = 4, X = {A,B, {1, 3}, {1, 4}}, d(n,m) ≜ |n−m|.

Proof. (PointSet does not satisfy (CR6))
Counter-example 0.

Proof. (WSD does not satisfy (CR6))
Counter-example 0.

Proof. (MaxSum does not satisfy (CR6))
Counter-example 0.

Proof. (Max does not satisfy (CR6))
Counter-example 0.

Proof. (Pairs does not satisfy (CR6))
Counter-example: A = {2}, B = {1}, x = 3, y = 4, d(n,m) ≜ |n−m|, X = {A,B, {2, 3}, {2, 4}.

B.4.3 (CR7Far)

Counter-example 1:
A = {2}, B = {3}, C = {1, 2}, D{1, 4}, X = {A,B,C,D}, x = 1, d(n,m) ≜ |n−m|, Dmax(X, d) = 4.

Proof. (Drast does not satisfy (CR7Far))
See counter-example 1.

Proof. (Delta does not satisfy (CR7Far))

Counter-example: A = ∅, B = {1, 2}, x = 3, X = {A,B, {x}}:
Delta(A,B) = 2 < 3 = Delta({x}, B)
Delta(A ∪ {x}, B) = Delta({x}, B) = 3 ̸= 2 + 3 = Delta(A,B) + Delta({x}, B)
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Proof. (Bin does not satisfy (CR7Far))
Counter-example: A = {1, 2}, B = {1, 3}, x = 4, X = {A,B, {1, 2, 4}} and

⋃
X is ordonned with the usual order on

N.

Proof. (Inj does not satisfy (CR7Far))

We use as counter-example: A = {2}, B = {3}, C = {1, 2}, X = {A,B,C}, d(x, y) ≜ |x− y|:
Dmax(X, d) = 2
Injd(A,B) = 1 + 1 + 0 = 2
Injd({x}, B) = 2 + 2 + 0 = 4
So Injd(A,B) < Injd({x}, B) but: Injd(A ∪ {x}, B) = 1 + 0 + 2× 1 = 3 ̸= Injd(A,B) + Injd({x}, B)

Proof. (Haus does not satisfy (CR7Far))
See counter-example 1.

Proof. (Nij does not satisfy (CR7Far))
See counter-example 1.

Proof. (PointSet does not satisfy (CR7Far))
See counter-example 1.

Proof. (WSD does not satisfy (CR7Far))
See counter-example 1.

Proof. (Max does not satisfy (CR7Far))
See counter-example 1.

B.4.4 (CR7Str)

Proof. (Drast does not satisfy (CR7Str))
See counter-example 1.

Proof. (Delta does not satisfy (CR7Str))
Counter-example: A = ∅, B = {1, 2}, x = 3, X = {A,B, {x}}:
Delta(A,B) = 2
Delta({x}, B) = 3
Delta(A ∪ {x}, B) = Delta({x}, B) = 3 ̸= 2 + 3 = Delta(A,B) + Delta({x}, B)

Proof. (Bin does not satisfy (CR7Str))
Counter-example: A = {1, 2}, B = {1, 3}, x = 4, X = {A,B, {1, 2, 4}} and

⋃
X is ordonned with the usual order on

N.

Proof. (Inj does not satisfy (CR7Str))

We use as counter-example: A = {1}, B = {3}, C = {1, 2}, X = {A,B,C}, d(x, y) ≜ |x− y|:
Dmax(X, d) = 2
Injd(A,B) = 2 + 2 + 0 = 4
Injd({x}, B) = 1 + 1 + 0 = 2
Injd(A ∪ {x}, B) = 1 + 0 + 2× 1 = 3 ̸= Injd(A,B) + Injd({x}, B)

Proof. (Haus does not satisfy (CR7Str))
See counter-example 1.

Proof. (Nij does not satisfy (CR7Str))
See counter-example 1.

Proof. (PointSet does not satisfy (CR7Str))
See counter-example 1.

Proof. (WSD does not satisfy (CR7Str))
See counter-example 1.
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Proof. (MaxSum satisfies (CR7Str))

Let X be a set of sets,d a distance on
⋃
X, A,B ∈ X and x ∈

⋃
X such that x /∈ A ∪B:

MaxSumd(A ∪ {x}, B) =
∑

(a,b)∈(A∪{x})×B

d(a, b)

=
∑

(a,b)∈A×B

d(a, b) +
∑

(a,b)∈{x}×B

d(a, b)

= MaxSumd(A,B) + MaxSumd({x}, B)

Proof. (Max does not satisfy (CR7Str))
See counter-example 1.

Proof. (Pairs satisfies (CR7Str))
See proposition 14.

B.4.5 (CR8K)

Proof. (Drast does not satisfy (CR8K) for any K)
Drast is a distance so it cannot satisfy (CR8K) for any K by proposition 13.

Proof. (Delta satisfies (CR8K) for K = 1 and no other K)
Let X be a set of sets, A,B ∈ X, x ∈

⋃
X such that x /∈ A ∪ B. Then: (A ∪ {x})∆B = (A∆B)∪̇{x}. So

Delta(A ∪ {x}, B) = #((A ∪ {x})∆B) = #(A∆B) + #{x} = Delta(A,B) + 1.
So Delta satifies (CR8K) for K = 1 and no other K.

Proof. (Bin does not satisfy (CR8K) for any K)
Bin is a distance so it cannot satisfy (CR8K) for any K by proposition 13.

Proof. (Inj does not satisfy (CR8K) for any K)
Let ⟨X, d⟩ be a metric space, Injd is a distance so it cannot satisfy (CR8K) for any K by proposition 13.

Proof. (Haus does not satisfy (CR8K) for any K)
Let ⟨X, d⟩ be a metric space, Hausd is a distance so it cannot satisfy (CR8K) for any K by proposition 13.

Proof. (Nij does not satisfy (CR8K) for any K)
Let X be {1, 2, 3, 4} and d(n,m) ≜ |n−m|. Suppose that Nijd satisfies (CR8K) for some K in R. Then:
Nijd({1}, {3}) = |1− 3|+ 0 = 2
Nijd({1, 2}, {3}) = |3− 2|+ 1 = 2 = Nijd({1}, {3}) + 0
So K = 0. And:
Nijd({1}, {4}) = |1− 4|+ 0 = 3
Nijd({1, 2}, {4}) = |4− 2|+ 1 = 3 = Nijd({1}, {3}) + 1
So K = 1. Contradiction.

Proof. (PointSet does not satisfy (CR8K) for any K)
Same counter-example as for Nij.

Proof. (WSD does not satisfy (CR8K) for any K)
Let X be {1, 2, 3, 4} and d(n,m) ≜ |n−m|. Suppose that WSDd satisfies (CR8K) for some K in R. Then:
WSDd({1}, {2}) = |1− 2|+ |2− 1| = 2
WSDd({1, 3}, {2}) = (|1− 2|+ |1− 3|+ |2− 3|)× 2 = 8 = WSDd({1}, {2}) + 6
So K = 6. And:
WSDd({1, 4}, {2}) = (|1− 2|+ |2− 4|+ |1− 4|)× 2 = 12 = Nijd({1}, {2}) + 10
So K = 10. Contradiction.

Proof. (MaxSum does not satisfy (CR8K) for any K)
Same counter-example as for Nij.

Proof. (Max does not satisfy (CR8K) for any K)
Same counter-example as for WSD.
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Proof. (Pairs does not satisfy (CR8K) for any K)
Let X be a set of sets and d be a distance on

⋃
X. Suppose that Pairsd satisfies (CR8K) for some K, then Pairsd

satisfies (CR6) because (CR8K) implies (CR6). However Pairsd does not satisfy (CR6). Contradiction.

B.4.6 (CR16)

Proof. (Drast does not satisfy (CR16))
We use as counter-example: A = {1}, B = {3}, C = {1, 2}, X = {A,B,C}, d(x, y) ≜ |x− y|:
Drast(A,B) = 1 = Drast(C,B)

Proof. (Delta satisfies (CR16))
Delta satifies (CR81) so it satisfies (CR16) by proposition 1.

Proof. (Bin does not satisfy (CR16))
We use as counter-example: A = {3}, B = {1}, C = {2, 3}, X = {A,B,C}, d(x, y) ≜ |x−y| and the elements of

⋃
X are

ordonned by the usual order on N. Then A is represented by 001, B by 100 and C by 011. So: Bin(A,B) = |1− 4| =
3 > 1 = |3− 4| = Bin(C,B).

Proof. (Inj does not satisfy (CR16))
Same counter-example as for Drast.

Proof. (Haus does not satisfy (CR16))
Same counter-example as for Drast.

Proof. (Nij does not satisfy (CR16))
Same counter-example as for Drast.

Proof. (PointSet does not satisfy (CR16))

We use as counter-example: A = {1}, B = {3}, C = {1, 2}, X = {A,B,C}, d(x, y) ≜ |x− y|:
PointSetd(A,B) = |1− 3|+ |3− 1| = 4
PointSetd(A ∪ {2}, B) = |1− 3|+ |2− 3|+ |3− 2| = 4 = PointSetd(A,B).

Proof. (WSD satisfies (CR16))
Let X be a set of sets and d be a distance on

⋃
X. Let A,B ∈ X and x ∈

⋃
X such that x /∈ A ∪B and A ∪ {x} ∈ X:

If A = B:
WSDd(A ∪ {x}, B) =

∑
(a,b)∈((A∪{x})∆B)2

d(a, b) + Drast(A ∪ {x}, B) =
∑

(a,b)∈({x}2

d(a, b) + 1 = 1 > 0 = WSDd(A,B)

If A ̸= B:

WSDd(A ∪ {x}, B) =
∑

(a,b)∈((A∪{x})∆B)2

d(a, b) + Drast(A ∪ {x}, B)

=
∑

(a,b)∈((A∆B)∪̇{x})2
d(a, b) + 1

=
∑

(a,b)∈A∆B

d(a, b) + 2×
∑

(a, b) ∈ {x} × (A∆B)d(a, b) + d(x, x) + 1

= WSDd(A,B) + 2×
∑

(a, b) ∈ {x} × (A∆B)d(a, b)
> WSDd(A,B)

(Because A∆B ̸= ∅ and x /∈ A∆B.)

Proof. (MaxSum does not satisfy (CR16))
We use as counter-example: A = B = ∅, C = {1}, X = {A,C}, d(x, y) ≜ |x− y|:
MaxSumd(A,B) = 0 = MaxSumd(C,B)

Proof. (Max does not satisfy (CR16))

Let A = {1}, B = {3}, x = 2, X = {A,B, {1, 2}}, d(n,m) ≜ |n−m|.
Maxd(A ∪ {x}, B) = |3− 1| = Maxd(A,B)
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Proof. (Pairs does not satisfy (CR16))

Let A = {1}, B = ∅, x = 2, X = {A,B, {x}}, d(n,m) ≜ |n−m|.
x /∈ A ∪B and: Pairsd(A ∪ {x}, B) = Pairsd(A ∪ {x}, ∅) = 0 = Pairsd(A,B).

B.4.7 (CR18)

Proof. (Drast satisfies (CR18))

Let X be a set of sets, A,B ∈ X: A = (A \B)∪ (A∩B) and B = (B \A)∪ (A∩B), so A = B ⇐⇒ A \B = B \A. So:
Drast(A,B) = 1 ⇐⇒ A = B ⇐⇒ A \ B = B \ A ⇐⇒ Drast(A \ B,B \ A) = 1. The same: Drast(A,B) = 0 ⇐⇒
Drast(A \B,B \A) = 0.
Since Drast ∈ {0, 1}X , Drast(A,B) = Drast(A \B,B \A).

Proof. (Delta satisfies (CR18))

Let X be a set of sets, A,B ∈ X: Delta(A,B) = #(A∆B) = #((A \B)∆(B \A)) = Delta(A \B,B \A).

Proof. (Bin satisfies (CR18))

Let X be a set of sets, A,B ∈ X, suppose (wlog) that the elements of
⋃
X are ordonned (

⋃
X = {x1, x2, ...}):

Bin(A,B) = |Numb(A)− Numb(B)|
= |

∑
xk∈A

2k −
∑
xk∈B

2k|

= |
∑

xk∈A∩B
2k +

∑
xk∈A\B

2k −
∑

xk∈A∩B
2k −

∑
xk∈B\A

2k|

= |
∑

xk∈A\B

2k −
∑

xk∈B\A

2k|

= Bin(A \B,B \A)

Proof. (Haus does not satisfy (CR18))

Let X be a set of sets, d be a distance on
⋃
X, A,B ∈ X, suppose that B ⊆ A and Dmax(A, d) < Dmax(

⋃
X, d).:

(for example A = {1, 2, 3}, B = {1}, C = {7, 8}, X = {A,B,C} and d is the distance on N defined by: d(x, y) ≜ |x− y|)
Then Hausd(A,B) ⩽ Dmax(A, d) < Dmax(

⋃
X, d) and:

Hausd(A \B,B \A) = Hausd(A \B, ∅) = Dmax(
⋃
X, d).

So we have a case where: Hausd(A,B) ̸= Hausd(A \B,B \A).

Proof. (WSD satisfies (CR18))

LetX be a set of sets, d be a distance on
⋃
X, A,B ∈ X: A∆B = (A\B)∆(B\A) and Drast(A,B) = Drast(A\B,B\A)

(see the first proof of this subsection). So:

WSDd(A,B) =
∑

(x,y)∈(A∆B)2

d(x, y) + Drast(A,B)

=
∑

(x,y)∈((A\B)∆(B\A))2

d(x, y) + Drast(A \B,B \A)

= WSDd(A \B,B \A)

Proof. (MaxSum does not satisfy (CR18))

We use the following counter-example: A = {1, 2}, B = {2, 3}, X = {A,B} and d defined as d(x, y) = |x− y| .
MaxSumd(A,B) = |1− 2|+ |1− 3|+ |2− 2|+ |2− 3| = 4
MaxSumd(A \B,B \A) = |1− 3| = 2
So we have a case where: MaxSumd(A,B) ̸= MaxSumd(A \B,B \A).
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Proof. (Max does not satisfy (CR18))
We use the following counter-example: A = {1, 2, 9}, B = {1, 3, 9}, X = {A,B} and d defined as d(x, y) = |x − y| .
Then: Maxd(A,B) = |1− 9| = 8 ̸= 1 = |2− 3| = Maxd(A \B,B \A)

Proof. (Pairs does not satisfy (CR18))
Same counter-example as the proof for MaxSum:
Pairsd(A,B) = |1− 2|+ |1− 3|+ |2− 2|+ |2− 3| − |2− 2| = 4
Pairsd(A \B,B \A) = |1− 3| = 2 ̸= Pairsd(A,B).

B.4.8 (d-CR11)

Counter-example 2:

a1

a2

b1

b2 c
A B

X = {A,B, {c}}. We use Man as a distance on
⋃
X. Dmax(x, Man) = 10.

Proof. (Injd satisfies (d-CR11) if and only if #X ⩽ 2)

Let ⟨X, d⟩ be a metric space. If #X ⩽ 1, (d-CR11) is trivially satisfied.
Suppose that #X = 2. Then X = {x, y}. Suppose that A and B are not empty, then we are in one of the four following
situations:

• A = B: then ∃a ∈ A∩ and Injd(A,B) = d(a, a).

• A = {x}, B = {y}: then Injd(A,B) = d(x, y).

• A = {x}, B = {x, y}: then Injd(A,B) = d(x, x) + Dmax(X, d) = d(x, y).

• Symmetric cases.

Suppose that X has at least 3 elements x, y, z. Suppose (wlog) d(x, y) ⩽ d(x, z). Then Injd({x}, {y, z}) = d(x, y) +
Dmax(x, d) > d(x, y) ⩾ d(x, z).

Proof. (Hausd satisfies (d-CR11))
By definition of Haus.

Proof. (Nijd does not satisfy (d-CR11))
See counter-example 2.

Proof. (PointSetd does not satisfy (d-CR11))
See counter-example 2.

Proof. (WSDd does not satisfy (d-CR11))
See counter-example 2.

Proof. (MaxSumd does not satisfy (d-CR11))
See counter-example 2.

Proof. (Maxd satisfies (d-CR11))
By definition of Max.

Proof. (Pairsd does not satisfy (d-CR11))
See counter-example 2.
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B.4.9 (d-CR17a)

Proof. (Drast satifies (d-CR17a) if and only if d = Drast)

Let X be a set, x, y ∈ X. Drast({x}, {y}) = 1 ⇐⇒ x = y so Drast({x}, {y}) = Drast(x, y)
So Drast satisfies (Drast-CR17a).
Reciprocally, let ⟨X, d⟩ be a metric space such that Drast satifies (d-CR17a). Then for all x, y ∈ X, Drast({x}, {y}) =
d(x, y) and Drast({x}, {y}) = 1 ⇐⇒ x = y, elseway Drast({x}, {y}) = 0 . So d = Drast.

Proof. (Injd satisfies (d-CR17a))
By definition of Inj.

Proof. (Hausd satisfies (d-CR17a))
By definition of Haus.

Proof. (Nijd satisfies (d-CR17a))
By definition of Nij.

Proof. (PointSetd satisfies: ∀x, y ∈ X, PointSetd({x}, {y}) = 2d(x, y) )
By definition of PointSet.

Proof. (WSDd satisfies: ∀x, y ∈ X, PointSetd({x}, {y}) = 2d(x, y) + Drast(x, y) )
By definition of WSD.

Proof. (MaxSumd satisfies (d-CR17a))
By definition of MaxSum.

Proof. (Maxd satisfies (d-CR17a))
By definition of Max.

Proof. (Pairsd satisfies (d-CR17a))
By definition of Pairs.

B.4.10 (d-CR17b)

Proof. (Drast satisfies (d-CR17b) if and only if Dmax(X, d) = 1, ie.d = Drast)
Let X be a set, and x ∈ X. Dmax(X, Drast) = 1. And:
Drast({x}, ∅) = 1 = Dmax(X, Drast)
So Drast satisfies (Drast-CR17b).
Let ⟨X, d⟩ be a metric space. Suppose that Drast satisfies (d-CR17b). Then:
Let x ∈ X, Drast({x}, ∅) = 1 so Dmax(X, d) = 1 and d is a distance, so d = Drast.
So if Drast satisfies (d-CR17b), then d = Drast.

Proof. (Injd satisfies (d-CR17b))
By definition of Inj.

Proof. (Hausd satisfies (d-CR17b))
By definition of Haus.

Proof. (Nijd does not satisfy (d-CR17b))

If X = {1, 2, 3, 4} and d(x, y) ≜ |x− y|, then:
Dmax(X, d) = 3 and Nijd({1}, 0) = 1 < Dmax(X, d).

Proof. (PointSetd satisfies (d-CR17b))
By definition of PointSet.

Proof. (WSDd does not satisfy (d-CR17b))
Same counter-example as for Nij.

Proof. (MaxSumd does not satisfy (d-CR17b))
Same counter-example as for Nij.
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Proof. (Maxd satisfies (d-CR17b))
By definition of Max.

Proof. (Pairsd does not satisfy (d-CR17b) and satisfies: ∀A ⊆ X, Pairsd(A, ∅) = 0)
By definition of Pairs.

B.4.11 (d-CR12)

Proof. (Sum satisfies (d-CR12n) for all n corresponding to an index in the cartesian product)
By definition of Sum.

B.5 The case of S5 Kripke models

B.5.1 Definition

Several specific classes of Kripke models can be defined, depending on the properties their accessibilty relation satisfies.
Let’s consider S5 Kripke models, defined in [Che80] as:

Definition 48. The S5 Kripke models are the Kripke models in which the following axiom schema are valid. For
all propositions p, q, r of L:

• □p⇒ p

• □p⇒ □□p

• p⇒ □♢p

Proposition 23. The S5 Kripke models are exactly the Kripke models where R is an equivalence relation.

We can then represent a S5 Kripke model ⟨W,R, f⟩ in a different way, using the equivalence classes of R. Moreover,
we consider that the valuation function of the considered models are injective, so that we can consider each world w as
the valuation associated to it f(w). This way, a S5 Kripke model becomes:

Definition 49. A S5 Kripke state is a pair ⟨w,W ⟩ where W is a set of valuations on A and w belongs to W .
A S5 Kripke model is a set M of S5 Kripke states, such that ∀⟨w,W ⟩ ∈ M,∀w′ ∈ W, ⟨w′,W ⟩ ∈ M and
∀⟨w,W ⟩, ⟨w′,W ′⟩ ∈M either W =W ′, or W ∩W ′ = ∅.

We then define the truth value of a proposition in such models:

Definition 50. We define recursively the truth of a formula of L in a state w of a model ⟨w,W ⟩ by:

w |= ⊤
w ⊭ ⊥
w |= a if and only if w(a) = 1 when a ∈ A

w |= ¬φ if and only if w ⊭ φ
w |= φ ∧ ψ if and only if w |= φ and w |= ψ
w |= □φ if and only if ∀w′ ∈W,w′ |= φ

A formula φ of L is true in a model M if ∀⟨w,W ⟩ ∈M,w |= φ.

B.5.2 Pre-distances and distance on S5 Kripke models

Definition 51 (⋆). Let Ω be a set and M ≜ ⟨W,R, f⟩ be a Kripke model. We say that M takes its values in Ω if
W ⊆ Ω.
We say that M is finite is W is finite.
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S5 Kripke models correspond to the specific case where R is an equivalence relation. Each equivalence class can be
seen as the point of view of an agent. In the case where there is a single agent, there is also a single equivalence class
and R is the universal relation. Then a S5 Kripke model with an unique equivalence class can be represented as a pair
⟨W, f⟩. If f is injective, we can replace W by f(W ). In that very specific case, a S5 Kripke model can be represented
by the set f(W ). A state of such model is then of the form ⟨f(w), f(W )⟩ or simply f(w).
In this section, we only consider the case where the interpretation functions of the models are injectives. The more
general case is treated in Section 4.

B.5.3 Specific case of a single agent

In the specific case of S5 Kripke models with a single equivalence class and an injective interpretation function, each
model ⟨W, f⟩ can be represented by the set f(W ).

Proposition 24 (⋆). Let Ω be a set, d be a distance on Ω, let S be a set-predistance function, S(d) is a pre-distance
between finite S5 Kripke models with a single equivalence class and taking their values in Ω.
Besides, if S is a set-distance function, then S(d) is a distance.

A distance on Ω always exits, for example with Drast.

Proposition 25 (⋆). Delta is a pre-distance between finite S5 Kripke models with a single equivalence class.

B.5.4 General case

Lemma 5 (⋆). Let S be a set-predistance function, T be a tuple-distance and d be a distance on Val(A). T (d, S(d))
is a pre-distance between states of S5 Kripke models.
Besides, if F is a set-distance function, then T (d, S(d)) is a distance between states of S5 Kripke models.

Corollary 3 (⋆). Sum(Ham, Haus(Ham)) and Sum(Ham, Inj(Ham)) are distances between states of S5 Kripke models.

Proposition 26 (⋆). Let S1 and S2 be two set-predistance functions, T be a tuple-distance and d be a distance on
Val(A). S2(T (d, S1(d))) is a pre-distance between S5 Kripke models.
Besides, if S1 and S2 are set-distances functions, then S2(T (d, S1(d))) is a distance between S5 Kripke models.

Corollary 4 (⋆). Haus(Sum(Ham, Haus(Ham))), Inj(Sum(Ham, Inj(Ham))), Inj(Sum(Ham, Haus(Ham))) and
HausSum(Ham, Inj(Ham)) are distances between S5 Kripke models.

It is also possible to use Delta in one of the steps of the construction, or any distance between sets. For example, since
a S5 Kripke model is a set of states:

Proposition 27 (⋆). Delta is a distance between S5 Kripke models.

Or we can also use delta on the equivalence classes of the states:

Proposition 28 (⋆). Haus(Sum(Ham, Delta)) and Inj(Sum(Ham, Delta)) are distances between S5 Kripke models.

The same goes by replacing Delta by Bin.

More generally:
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Proposition 29 (⋆). Let S be a set-predistance function, D be a pre-distance between sets of valuations, T be a
tuple-distance and d be a distance on Val(A). S(T (d,D)) is a pre-distance between S5 Kripke models.
Besides, if S is a set-distance function and D is a distance, then S(T (d,D)) is a distance between S5 Kripke
models.

Using the pre-distances defined in Section 3.1.4, we can define lots of other pre-distances. They will not be distances
but they can have very interresting properties, which are expressed by the axioms they satisfy. It is also perfectly
possible to use other pre-distances that are not defined in this document as constructing tools.

The final question to be answered is to know which axioms are the most desirable for our pre-distance to satisfy, in
order to choose which combination to use.
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