Bachelor internship Distances between Kripke models for distance-based belief revision

Roxane Van den Bossche

Tutors : Andreas Herzig, Jonathan Ben-Naim IRIT - Institut de Recherche en Informatique de Toulouse

June-July 2022

CNRS - INP - UT3 - UT1 - UT2.1

イロト 不得 トイヨト イヨト

1/45

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 - Axioms on pre-distances
 - Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Introduction

*: propositions that I proved and definitions that I introduced >: already proved in the literature

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision

2 Requirements on distances

Axioms on pre-distancesImpossibility result

3 Pre-distances and distances

- Candidates
- Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Modal logic

Language: L generated by \langle A, $\land, \neg, \Box, \top, \bot$ \rangle where A is a finite set of atomic propositions.

- □: "necessary"
- ◊: "possible"

 $\Diamond \varphi$ is equivalent to $\neg \Box \neg \varphi$.

Modal logic

Definition

A valuation on A is a function from A to $\{0,1\}$. The set of all valuations on A is noted by Val(A) $\triangleq \{0,1\}^{A}$.

Definition

A *Kripke model* is a triple $\langle W, R, f \rangle$ where:

- W is a non empty set. Its elements are called "worlds".
- R is a relation on W called accessibility relation.

• $f: W \rightarrow Val(A)$ is called interpretation function or labelling function

Modal logic

Definition

We define recursively the truth of a formula of L in a world w of a model $\langle W,R,f\rangle$ by:

$$\begin{array}{ll} w \models \top, w \nvDash \bot \\ w \models a & \text{if and only if} \quad f(w)(a) = 1 \text{ when } a \in \mathbb{A} \\ w \models \neg \varphi & \text{if and only if} \quad w \nvDash \varphi \\ w \models \varphi \land \psi & \text{if and only if} \quad w \models \varphi \text{ and } w \models \psi \\ w \models \Box \varphi & \text{if and only if} \quad \forall w' \in W, w R w' \Rightarrow w' \models \varphi \end{array}$$

A formula φ of L is true in a model $\langle W, R, f \rangle$ if $\forall w \in W, w \models \varphi$.

1 Introduction

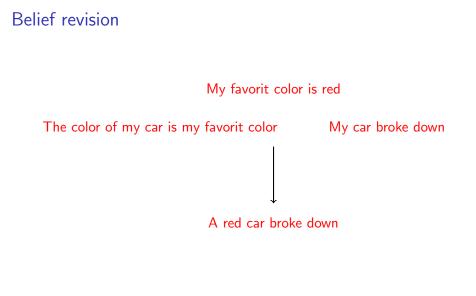
- Modal logic
- Belief revision
- Distance-based belief revision

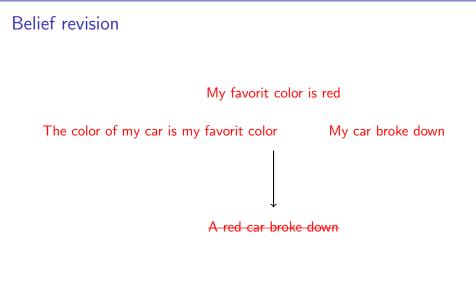
2 Requirements on distances

Axioms on pre-distancesImpossibility result

3 Pre-distances and distances

- Candidates
- Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives





Belief revision

My favorit color is red (?)

The color of my car is my favorit color (?) My car broke down (?)

A red car broke down

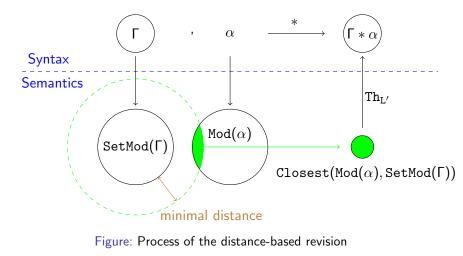
1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 - Axioms on pre-distancesImpossibility result

3 Pre-distances and distances

- Candidates
- Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Distance-based belief revision



Distance-based belief revision

Definition

We assume a language L' of classical logic, and X be a set of valuations on L', we define:

 $\operatorname{Th}_{L'}(X) \triangleq \{ \alpha \in L' \mid X \models \alpha \}$ (The set of all the formulas of L' satisfied by all valuations of X)

Let $\alpha \in L'$, $Mod(\alpha) \triangleq \{ v \in Val(A) \mid v \models \alpha \}$. (The set of all valuations satisfying (modeling) α)

Let $\Gamma \in \text{Pow}(L')$, SetMod $(\Gamma) \triangleq \{v \in \text{Val}(A) \mid v \models \Gamma\}$ (where $v \models \Gamma$ means $\forall \varphi \in \Gamma, v \models \varphi$).

Distance-based belief revision

Definition

A revision operator is a function $* : Pow(L') \times L' \rightarrow Pow(L')$.

A distance-based revision is a revision operator such that, for all $\langle \Gamma, \alpha \rangle \in Pow(L') \times L'$:

$$\Gamma * \alpha \triangleq \operatorname{Th}_{\mathsf{L}'}(\operatorname{Closest}(\operatorname{Mod}(\alpha), \operatorname{Set}\operatorname{Mod}(\Gamma)))$$

where $Closest(Mod(\alpha), SetMod(\Gamma))$ is the set of the elements of $Mod(\alpha)$ the closest to $SetMod(\Gamma)$ for a distance *d* between valuations and set of valuations.

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 - Axioms on pre-distances
 - Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Requirements on distances

Definition

Let X be a set. A *pre-distance* on X is a function from $X \times X$ to $[0, +\infty)$.

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 Axioms on pre-distances
 Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Axioms on any pre-distances

Definition (\star)

Let X be a set and F be a pre-distance on X. We define the following axioms:

$$\begin{aligned} & (\mathbf{CR1}) : (Identity respecting) \\ & \forall A, B \in X, \ F(A, B) = 0 \iff A = B \\ & (\mathbf{CR2}) : (Symmetric) \\ & \forall A, B \in X, \ F(A, B) = F(B, A) \\ & (\mathbf{CR3}) : (Triangle inequality) \\ & \forall A, B, C \in X, \ F(A, B) \leqslant F(A, C) + F(C, B) \end{aligned}$$

Definition

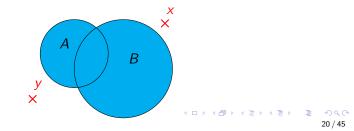
A distance is a pre-distance that satisfies (CR1), (CR2) and (CR3).

19 / 45

Axioms on pre-distances between sets

Definition (\star)

Let X be a set of sets and F a pre-distance on X. We define the following axiom:



Definition (*)

Let X be a set of sets and F a pre-distance on X. We define the following axioms:

Let *K* be a real number, (CR8_{*K*}) : (*K*-countability) $\forall A, B \in X, \forall x \in \bigcup X,$ $\{x\} \cap (A \cup B) = \emptyset \Rightarrow F(A \cup \{x\}, B) = F(A, B) + K$ (CR16) : (Inserting growth) $\forall A, B \in X, \forall x \in \bigcup X,$ $\{x\} \cap (A \cup B) = \emptyset \Rightarrow F(A \cup \{x\}, B) > F(A, B)$

Axioms on pre-distances between subsets of a finite metric space

Definition (\star)

Let $\langle X, d \rangle$ be a finite metric space. We define the following axioms: (*d*-**CR4**) : (*Elementary d-monotony*)

$$\begin{array}{l} \forall (x,x',y,y') \in X^4, \, \forall A \subseteq X, \forall B \subseteq X, \\ (d(x,x') < d(y,y') \land \{x,y\} \cap A = \emptyset \land \{x',y'\} \cap B = \emptyset) \\ \Rightarrow F(A \cup \{x\}, B \cup \{x'\}) < F(A \cup \{y\}, B \cup \{y'\}) \end{array}$$

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- Requirements on distances
 Axioms on pre-distances
 Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Impossibility result

Definition

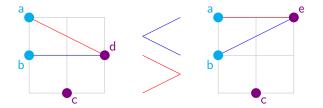
Let X be a set, we define the Hamming distance Ham as the distance on Val(X) such that $\forall v, w \in Val(X)$: Ham $(v, w) \triangleq \#\{x \in X \mid v(x) \neq w(x)\}$

Proposition (*)

(Eucl-CR4) cannot be satisfied (if Eucl is the euclidian distance in a geometric space). (Ham-CR4) cannot be satisfied.

Impossibility result

 $\begin{array}{l} \textit{Idea of the proof:} \\ \texttt{Eucl}(a,d) > \texttt{Eucl}(a,e) \implies \textit{F}(\{b,a\},\{c,d\}) > \textit{F}(\{b,a\},\{c,e\}) \\ \texttt{Eucl}(b,e) > \texttt{Eucl}(b,d) \implies \textit{F}(\{a,b\},\{c,e\}) > \textit{F}(\{a,b\},\{c,d\}) \\ \end{array}$



1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision

2 Requirements on distances

- Axioms on pre-distancesImpossibility result
- Pre-distances and distances
 Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Candidates Most general distance

Definition

Let X be a set. The *drastic distance* on X is the distance on X such that $\forall A, B \in X$: Drast $(A, B) \triangleq \begin{cases} 0 \text{ if } A = B \\ 1 \text{ otherwise} \end{cases}$ Candidates Distances on cartesian products

Lemma (*)

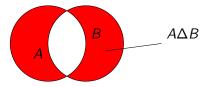
Let $n \in \mathbb{N}$, $(\langle X_i, d_i \rangle)_{i \in [\![1,n]\!]}$ be n metric spaces. We note $\mathbf{d} \triangleq (d_i)_{i \in [\![1,n]\!]}$ and $\mathbf{X} \triangleq X_1 \times ... \times X_n$, then the function $\operatorname{Sum}_{\mathbf{d}}$ on $\mathbf{X} \times \mathbf{X}$ such that $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}$:

$$\operatorname{Sum}_{\mathbf{d}}(\mathbf{x},\mathbf{y}) \triangleq \sum_{i=1}^{n} d_i(x_i,y_i)$$
 is a distance on **X**.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < () 28 / 45 Candidates Pre-distances between sets

Definition (\diamond)

Let X be a set of finite sets. We define $Delta(A, B) \triangleq \#(A \Delta B)$ where $A \Delta B$ is the symmetric difference between A and B (ie. $A \Delta B \triangleq (A \setminus B) \cup (B \setminus A)$).



Candidates Pre-distances between sets

Proposition (\diamond)

Delta is a distance on any set of finite sets.

Proposition (\star)

Let X be a finite set, Delta is the only pre-distance satisfying (CR1), (CR2) and $(CR8_1)$ on Pow(X).

Proof: Double induction on the cardinality of the sets.

${\sf Candidates}$

Pre-distances between subsets of a metric space

Definition (\star)

Let $\langle X, d \rangle$ be a finite metric space, we define

$$\operatorname{Dmax}(X,d) \triangleq \max_{(x,y)\in X^2} d(x,y).$$

Pre-distances between subsets of a metric space

Definition (\star)

Let $\langle X, d \rangle$ be a metric space. We define the following functions on $Pow(X) \times Pow(X)$, such that $\forall A, B \in Pow(X)$: (with $min(\emptyset) = 0$)

$$\begin{split} \mathtt{Inj}_d(A,B) &\triangleq \min_{f:A \hookrightarrow B} \mathtt{Dist}(d,A,B,f) + \min_{f:B \hookrightarrow A} \mathtt{Dist}(d,B,A,f) + \\ |\#A - \#B| \times \mathtt{Dmax}(X,d) \end{split}$$

where: $Dist(d, A, B, f) \triangleq \sum_{a \in A} d(a, f(a))$

Pre-distances between subsets of a metric space

Definition (\star)

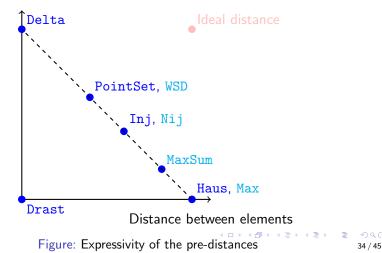
Let $\langle X, d \rangle$ be a metric space. We define the following functions on $\operatorname{Pow}(X) \times \operatorname{Pow}(X)$, such that $\forall A, B \in \operatorname{Pow}(X)$: (with $\min(\emptyset) = \operatorname{Dmax}(X, d)$) PointSet_d $(A, B) \triangleq \sum_{x \in A} \operatorname{dist}(x, B, d) + \sum_{y \in B} \operatorname{dist}(y, A, d)$ where $\operatorname{dist}(x, B, d) \triangleq \min\{d(x, y) | y \in A\}$

Proposition (\star)

Let $\langle X, d \rangle$ be a metric space, Inj_d is a distance between the subsets of X, and $\operatorname{PointSet}_d$ is not.

Pre-distances between subsets of a metric space

Number of elements that differ



Distances between relations

Let X be a set. A relation on X is a set of pairs of elements of X. Let d be a distance on X. Then $Sum_{(d,d)}$ is a distance on $X \times X$. Then $Haus_{Sum(d,d)}$ is a distance on $Pow(X \times X)$, i.e., a distance between relations on X.

Proposition (\star)

Let $\langle X, d \rangle$ be a metric space, $\operatorname{Haus}_{\operatorname{Sum}(d,d)}$ and $\operatorname{Inj}_{\operatorname{Sum}(d,d)}$ are distances between relations on X.

The same can be done with other pre-distances.

Distances between functions

Definition

Let X, Y be two sets. Let $f : X \to Y$ be a function, we define the graph of f as $Graph(f) \triangleq \{\langle x, f(x) \rangle \mid x \in X\}.$

Proposition (*)

Let X be a finite set, $(f,g) \mapsto \text{Delta}(\text{Graph}(f), \text{Graph}(g))$ is a distance between functions from X to any other set.

Proposition (\star)

Let $\langle X, d \rangle$ and $\langle Y, d' \rangle$ be two metric spaces, $(f,g) \mapsto \operatorname{Haus}_{\operatorname{Sum}(d,d')}(\operatorname{Graph}(f), \operatorname{Graph}(g))$ and $(f,g) \mapsto \operatorname{Inj}_{\operatorname{Sum}(d,d')}(\operatorname{Graph}(f), \operatorname{Graph}(g))$ are distances between functions from X to Y.

Definition (*)

Let X be a set and $\langle Y, d \rangle$ be a finite metric space, and let f and g be two functions from X to Y. We define: ExtHam_d(f,g) $\triangleq \sum_{x \in X} d(f(x), g(x)).$

Ham then is exactly ExtHam_{Drast} applied to valuations.

Proposition (\star)

Let X be a finite set and $\langle Y, d \rangle$ be a finite metric space, \mathtt{ExtHam}_d is a distance on Y^X .

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision

2 Requirements on distances

- Axioms on pre-distancesImpossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Axiomatic study of the candidates

		Pre-distances		Pre-distances Between sets		Pre-distances between subsets of a metric space								Pre-distances Between Tuples	
		Drast	Plus(d1,d2)	Delta	Bin	Inj(d)	Haus(d)	Nij(d)	PoinSet(d)	WSD(d) MaxSum(d)	Max(d)	Pairs(d)	Sum(d,)	Names of the axioms :
Axioms on Pre-distances	CR1	V	~	V	×	v	v	V	v	v	X	X	X****	v	Identity respecting
	CR2	V	v	V	v	V	V	v	v	V	V	v	v	V	Symmetry
	CR3	V	v	V	v	V	v	X***	X	X	X	v	X	v	Triangle inequality
	D-CR9	D	d, d1, d2	D						D				D	D-monotony
Axioms on Pre-distances Between sets	CR5	V	d1,d2	V	х	V	Х	v	X	Х	X	х	X		Subset equivalence
	CR6	V		V	×	X	х	X	X	X	X	х	X		Stranger equivalence
	CR7 far	X		Х	х	X	х	X	X	X		х			Far decomposability
	CR7 str	X		Х	x	X	х	X	X	X	V	x	v		Stranger decomposability
	CR8 K	X		V	×	X	X	X	X	X	X	х	X		K-denombrability
	CR9	X		V	х	X	х	X	X	X	X	х	X		Delta-monotony
	CR16	X		V	х	X	х	X	X	V	X	х	X		Inserting growth
	CR18	V		V	v		X			V	X	X	X		Intersection indifference
Axioms on Pre-distances Between substes Of a metric space	d-CR4 far	d	d,d1,d2			V									Far elementary d-monotony
	d-CR4 far'	1										v			Far elementary d-monotony bis
	d-CR10	1		Х	d	X	х	х	X	X	V	х			Global d-monotony
	d-CR10"	1		Х							V				Global injective d-monotony
	d-CR11	1				X*	V	X	X	X	X	v	X		d-represented
	d-CR17a	S*(7)				V	V	v	V*(5)	X*(6)	V	v	v		d-singleton fidelity
	d-CR17b	S*(8)				V	v	X	V	X	X	v	X*(9)		d-void maximality
Pre-distance	d-CR12	1	4 44 40											V	d-left/right/n-monotony
Between tuples	d-CR12S		d, d1, d2											d	Strong d-left/right/n-monotony
Between elements of	D-CR13	X	d1,d2												Union D-monotony
Type (element,set)	CR14	X	u1,u2												Membership distinction

Figure: Axiomatic study of the introduced pre-distances

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 - Axioms on pre-distances
 - Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates

4 Application to belief revision in modal logic

5 Conclusion and perspectives

Application to belief revision in modal logic

Corollary (*)

The following functions are distances between finite Kripke models:

```
Sum(Haus(Drast), RDF(Haus, Sum, Drast), FDF(Haus, Sum, Drast, Ham))
Sum(Inj(Drast), RDF(Inj, Sum, Drast), FDF(Inj, Sum, Drast, Ham))
Sum(Haus(Drast), RDF(Haus, Sum, Drast), ExtHam<sub>Ham</sub>)
Sum(Haus(Drast), RDF(Inj, Sum, Drast), Delta)
Sum(Delta, Delta, Delta)
and so on...
```

If there is a distance on Ω , Drast can be replaced by this distance.

1 Introduction

- Modal logic
- Belief revision
- Distance-based belief revision
- 2 Requirements on distances
 - Axioms on pre-distances
 - Impossibility result
- 3 Pre-distances and distances
 - Candidates
 - Axiomatic study of the candidates
- 4 Application to belief revision in modal logic
- 5 Conclusion and perspectives

Conclusion and perspectives

What I did during this internship

- Goal of the internship: find a distance between Kipke models
- Serveral distances found and more studied
- Axiomatic study of the found distances
- General methods for the construction of distances
- Characterization of Delta and Pairs
- Impossibility result on (CR4)
- An article in progress

Conclusion and perspectives What next ?

- Pertinence of each axiom
- Application to real cases
- The difficulty of the translation between syntax and semantics

Thank you for your attention.