M1 Internship: Backward Responsibility in Counterexamples of Model Checkers

Roxane Van den Bossche

Tutors: Christel Baier, Sascha Klüppelholz, Jakob Piribauer Coworker: Johannes Lehmann

Institut für Informatik, Technische Universität Dresden

CHAIR OF ALGEBRAIC AND LOGICAL FOUNDATIONS OF COMPUTER SCIENCE

February - June 2023

- 1. The problem
- 2. Semivalues
- 3. Optimistic and pessimistic responsibilities
- 4. Characterisation of the optimistic responsibility
- 5. Complexity results

Figure: Model checking in a diagram

The problem: Intuition

"Backward Responsibility in Counterexamples of Model Checkers"

Figure: A transition system with a counterexample in red

Definitions:

- Transition systems: $TS = (S, \rightarrow, s_0)$, deterministic
- **Runs:** infinite sequence of states $\rho = \rho_0 \rho_1 \ldots \in S^{\omega}$ where $\rho_0 = s_0$ and $\forall i \in \mathbb{N}$ $\rho_i \to \rho_{i+1}$
- Set of bad states: $S_{\notin} \subseteq S$
- **Counterexamples:** $\rho = \rho_0 \dots \rho_k \in S^*$ such that it is the prefix of a run, $\rho_k \in S_{\frac{i}{2}}$, $\rho_i \notin S_{\frac{i}{2}}$ for $i \in \{0, \dots, k-1\}$ and $\rho_i \neq \rho_j$ for all $i \neq j$ ie. they are loop-free.

Semivalues

- Finite set of *players X*
- Coalitions: $C \subseteq X$
- Cooperative games: $v: 2^X \to \mathbb{R}$
- Set of cooperative games on $X: G^X$

Definition (Semivalue)

Let X be a finite set of players with n := |X|. Then $\mathcal{R}: G^X \to X \to \mathbb{R}$ is a *semivalue* if there exists a weight vector $p = (p_0, \ldots, p_{n-1})$ such that, for any game $v \in G^X$ and player $i \in X$, we have

$$\mathcal{R}(\mathbf{v},i) = \sum_{C \subset \mathbf{X} \setminus \{i\}} p_{|C|}[\mathbf{v}(C \cup \{i\}) - \mathbf{v}(C)]$$

Definition

We call $p = (p_0, \ldots, p_{n-1})$ a weight vector if

$$\sum_{k=0}^{n-1} \binom{n-1}{k} p_k = 1.$$

Classical semivalues:

- The Shapley value: $p_k^S := \frac{(n-k-1)!k!}{n!}$
- The Banzhaf value: $p_k^{\mathcal{B}} := \frac{1}{2^{n-1}}$

Intuition

Figure: A transition system with a counterexample in red

Intuition

Figure: A transition system with a counterexample in red

→ How to quantify the actions of $S \setminus (C \cup \rho)$?

Intuition

Figure: A transition system with a counterexample in red

→ How to quantify the actions of $S \setminus (C \cup \rho)$?

Optimistic and pessimistic responsibilities

- Safety games: $(S_{Safe}, S_{Reach}, \rightarrow, s_0, S_{\ddagger})$
 - Transition system: (S, \rightarrow, s_0)
 - $S := S_{Safe} \uplus S_{Reach}$ and $S_{\frac{1}{2}} \subseteq S$
 - Winning condition of the form $\Omega_{S_{i}} = \{ \rho \mid \forall i \in \mathbb{N} \colon \rho_{i} \notin S_{i} \}$
 - A strategy for Safe is a function σ: S_{Safe} → S with s → σ(s) for all s ∈ S_{Safe} (same for Reach)
 - A strategy for Safe is winning if, for all strategies of Reach, the induced play is winning for Safe, ie. ρ ∈ Ω_{S_i}.

Optimistic and pessimistic responsibilities

- $\mathcal{G}^{TS}_{
 ho,S_{\sharp}}$ (C): safety game defined as $(C,S\setminus C,
 ightarrow',s_{0},S_{\sharp})$ where
 - \rightarrow' is \rightarrow in which actions from ρ are "engraved" for $\rho \setminus C$.
 - Safe controls C
 - Reach controls $S \setminus C$

Definition (Optimistic and pessimistic cooperative games)

Let $C \subseteq S$.

Optimistic cooperative game:

$$\mathcal{G}(\mathcal{C}) = \left\{ egin{array}{cc} 1 & ext{if player Safe wins } \mathcal{G}_{
ho,S_i}^{\mathcal{TS}} \left(\mathcal{C} \cup (S \setminus
ho)
ight) \ 0 & ext{otherwise} \end{array}
ight.$$

Pessimistic cooperative game:

$$v_{\perp}(C) = \left\{egin{array}{c} 1 & ext{if player Safe wins } \mathcal{G}_{
ho,S_{\acute{t}}}^{TS}\left(C
ight) \ 0 & ext{otherwise.} \end{array}
ight.$$

Optimistic and pessimistic responsibilities

Now we can apply semivalues :-)

Remember how semivalues look like:

$$\mathcal{R}(\mathbf{v},i) = \sum_{C \subset \mathbf{X} \setminus \{i\}} p_{|C|}[\mathbf{v}(C \cup \{i\}) - \mathbf{v}(C)]$$

Definition (Responsibility)

Let ρ be a counterexample, let \mathcal{R} be a semivalue on G^{S} .

- 1. The optimistic responsibility of s with respect to \mathcal{R} is $\mathcal{R}(v_{\top}, s)$.
- 2. The pessimistic responsibility of s with respect to \mathcal{R} is $\mathcal{R}(v_{\perp}, s)$.

5	$\mathcal{S}(\textit{v}_{ op},\textit{s})$	$\mathcal{S}(\textit{v}_{\perp},\textit{s})$	$\mathcal{B}(v_{ op},s)$	$\mathcal{B}(v_{\perp},s)$
s_1	1	0.5	1	0.5
s 2	0	0	0	0
s 3	0	0.5	0	0.5
<i>s</i> 4	0	0	0	0
<i>S</i> 5	0	0	0	0

Figure: Working example 3, run 1

Set of winning states: $WS_{\top} := \{s \in S \mid v_{\top}(\{s\}) = 1\}$

Set of responsible states: $RS_{\top}(\mathcal{R}) := \{s \in S \mid \mathcal{R}(v_{\top}, s) > 0\}$

Proposition

Let \mathcal{R} be a semivalue with $\text{Weights}_0(\mathcal{R}) > 0$. Then we have

 $\mathcal{R}(\mathbf{v}_{\top}, \mathbf{s}) > 0 \iff \mathbf{v}_{\top}(\{\mathbf{s}\}) = 1, \text{i.e. } \mathbb{R}\mathbb{S}_{\top}(\mathcal{R}) = \mathbb{W}\mathbb{S}_{\top}.$

Theorem (Characterisation)

Let $\mathcal R$ be a semivalue, then there exists $\mathcal K\in\mathbb R$ such that

- $\forall s \notin \mathtt{WS}_{ op}, \mathcal{R}(v_{ op}, s) = 0$
- $\forall s \in \mathtt{WS}_{ op}, \mathcal{R}(v_{ op}, s) = K$

and
$$K = \sum_{k=0}^{n-w} \binom{n-w}{k} p_k$$
 where $w := |\mathtt{WS}_{ op}|$.

Additionally, we have $WS_{\top} \subseteq \rho$.

Optimistic case:

- Positivity problem: Linear time
- Threshold problem and computation problem: Quadratic time

Pessimistic case:

- Positivity problem: in NP (actually NP-complete)
- Threshold problem: in PSPACE
- Computation problem: in #P

Conclusion

Summary:

- Two notions of responsibility
- Both intuitive and effective (automatic repair)
- Simple characterisation for the optimistic responsibility
- Linear complexity for the optimistic responsibility
- Pessimistic responsibility is more complex

Other contributions:

- Quick implementation (coalition trees, attractor algorithm)
- Article submitted at AAAI
- Recursive responsibility, an inspiring fail
- Generalisation to LTL properties
- A conjecture tested for $n \leq 5$: Banzhaf and Shapley values give equivalent results
- And next...

References

- C. Mascle, C. Baier, F. Funke, S. Jantsch, and S. Kiefer, "Responsibility and verification: Importance value in temporal logics," in *LICS*, pp. 1–14, IEEE, 2021.
- [2] C. Baier, F. Funke, and R. Majumdar, "A game-theoretic account of responsibility allocation," in IJCAI, pp. 1773–1779, ijcai.org, 2021.
- [3] C. Baier, C. Dubslaff, F. Funke, S. Jantsch, R. Majumdar, J. Piribauer, and R. Ziemek, "From verification to causality-based explications (invited talk)," in *ICALP*, vol. 198 of *LIPIcs*, pp. 1:1– 1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
- [4] P. Dubey, A. Neyman, and R. J. Weber, "Value theory without efficiency," Mathematics of Operations Research, vol. 6, no. 1, pp. 122–128, 1981.
- [5] A. Laruelle and F. Valenciano, "Shapley-shubik and banzhaf indices revisited," Mathematics of Operations Research, vol. 26, no. 1, pp. 89–104, 2001.
- [6] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
- [7] E. Grädel, W. Thomas, and T. Wilke, eds., Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], vol. 2500 of Lecture Notes in Computer Science, Springer, 2002.

Thank you for your attention.

Example 2

	S	$\mathcal{S}(v_{ op},s)$	$\mathcal{S}(v_{\perp},s)$	$\mathcal{B}(v_{ op},s)$	$\mathcal{B}(v_{\perp},s)$
	s_1	0.1667	0.0238	0.1667	0.04
	<i>s</i> ₂	0.1667	0.0238	0.1667	0.04
\rightarrow (1) (1) (2) (3)	<i>s</i> 3	0.1667	0.2238	0.1667	0.2
	<i>S</i> 4	0	0.0571	0	0.12
(\mathbf{S}_4)	<i>S</i> 5	0.1667	0.2238	0.1667	0.2
$\sim (S_{10})^{\prime}$ $(S_{5})^{\prime} \xrightarrow{(S_{5})^{\prime}} (S_{5})^{\prime}$	<i>s</i> ₆	0.1667	0.2238	0.1667	0.2
	<i>s</i> 7	0	0	0	0
58	s 8	0	0	0	0
\bigcirc	S 9	0.1667	0.2238	0.1667	0.2
	s_{10}	0	0	0	0

Figure: Working example 10, run 1