Math club - Session 1: Logic, variables and functions An Introduction to the Language of Mathematics

Roxane Van den Bossche, 2023.10.11

1 Basic logic and sets

1.1 Basic logic symbols

We write A, B, C, \ldots for propositions. For example A could represent "I like blue." or "x=2".

Symbol	Meaning (en)	Meaning (fr)
$A \Rightarrow B$	A implies B	A implique B
$A \Leftarrow B$	A is implied by B	A est impliqué par B
$A \Longleftrightarrow B$	A is equivalent to B,	A est équivalent à B ,
	A if and only if B (A iff B) A does not imply B	A si et seulement si B (A ssi B) A n'implique pas B
$\neg A$	not A	$\text { non } \mathrm{A}$
$\exists x \mid A$	There exists x such that A is true (A depending on x)	Il existe x tel que A est vrai (A dépendant de x)
$\forall x . A$	For all x, A is true (A depending on x)	Pour tout x , A est vrai (A dépendant de x)

Example: Contraposition

Proposition 1. If $A \Rightarrow B$ then $\neg B \Rightarrow \neg A$.
Proof. (Proof by contradiction)
Let $A \Rightarrow B$ be true. Let $\neg B$ be true, suppose A. Then, since $A \Rightarrow B$, we know that B is also true. Contradiction. So we have $\neg A$.

Remark: In fact we don't say "A is true" but just "A".
Exercise 1: True or false? If $A \Rightarrow B$ and $B \Rightarrow C$ then:

1) $B \Rightarrow A$
2) $C \Rightarrow A$
3) $A \Rightarrow C$

Remark: This is called transitivity of implication.
Exercise 2: True or false? If $A \Rightarrow B$ and $B \Rightarrow A$ and $\neg B$, then:

1) $A \Rightarrow \neg B$
2) $A \Rightarrow \neg A$
3) $A \Longleftrightarrow B$
4) $\neg A$

1.2 Sets

A set is a group of elements, it can contain anything. In sets, the elements occure at most one time and are not ordered. For example $\{1,2,3\}$ is the same set as $\{2,1,3\}$ and $\{1,1,1\}$ is not a set. $\{\star, \triangle, \square, \diamond\}$ is also a set. Set can be finite or infinite. For example $\mathbb{N}=\{0,1,2,3,4,5, \ldots .$. is infinite.

Symbol	Meaning	Name (en)	Name (fr)
$\{1, a, \star, \pi\}$	Set containing $1, a, \star, \pi$	A set	Un ensemble
\emptyset	Set containing nothing	Empty set	Ensemble vide
$x \in S$	The element x is contained in	x is in S	x est dans S
$x \notin S$	the set S	x is not in S	
\mathbb{N}	$\{0,1,2,3, \ldots\}$	Natural numbers	Entiers naturels
\mathbb{Z}	$\{\ldots,-2,-1,0,1,2, \ldots\}$	Integers	Entiers relatifs
\mathbb{Q}	Numbers that can be written as	Rational numbers	Nombres rationnels
\mathbb{R}	$\frac{n}{m}$ with $n, m \in \mathbb{Z}$	All numbers: $-2,8.99999 \ldots, \pi, 10^{100}$	Real numbers
$A \subset B$	Set A is included in set B	A included in B	A inclus remels B B
$A \supset B$	Set A contains set B	A contains B	A contient B
$A \not \subset B$	Set A is not included in set B		A union B B
$A \cup B$	Set containing the elements of A	A union	
$A \cap B$	and those of B Set containing the elements that are both in A and B	A intersect B	A inter B
$A \backslash B$	Set containing the elements of A without those of B	A minus B	A privé de B
$(1,2,3)$	Tuple containing 1,2,3 in that order	tuple	n-uplet

Remark: Tuples are not sets, they can have several times the same element occurring and the order matters. Usually, they are finite. Tuples of size two are pairs and tuples of size three are triples. For example $(2,2)$ is a valid pair, but $\{2,2\}$ is not a valid set, and $(1,2) \neq(2,1)$.

Exercise 3: True or false?

- $\exists n \in \mathbb{N} \mid 1+n=5$
- $\exists n \in \mathbb{Z} \mid 1+n=0$
- $\forall n \in \mathbb{N} \mid 1+n \in \mathbb{N}$
- $\exists n \in \mathbb{N} \mid 1+n=0$
- $\forall n \in \mathbb{N} \mid 1+n=0$

Exercise 4: Let $A=\{1,2,3,7\}, B=\{1\}$ and $C=\{\star, \triangle, \square\}$.

- Do we have $A \subset B$?
- $A+B=$?
- Do we have $1 \in C$?
- $A \cap C=$?
- $A \backslash B=$?
- $A \cap B=$?
- Do we have $1 \in A$?
- $B \cup C=$?
- Do we have $A \backslash C$?
- Do we have $1 \in A \cap B$?

2 Variables and functions

2.1 Variables

Variables are mathematical objects which have a name but whose value can be unknown. They can have different natures: numbers, integers, sets, functions, and so on.

For example in the equation $x=y+1, x$ and y are variables and we know that they are real numbers. In the proposition $x \in\{\square, \triangle, \diamond\}$, we know that x is a geometrical symbol. In $A \subset B$, A and B are set variables.

Sometimes we use variables t represent a value that we want to calculate, but sometime we only need partial informations about this variable.

Example: My friend said she can come with me to a trip only if it costs at most $200 €$. We define the variable p which represents the price of the trip that I want to organize (price per person). Here, we only need to know if $p \leq 200$.

Remark: We need to know if $p \leq 200$ and not $p<200$, why?

Exercise 5: Following the previous example, translate the following sentences in math, using variables when needed. Then tell me if my friend will be able to come to my trip.

- Train will cost between 30 and $60 €$.
- Hotel cost less than $90 €$.
- We will eat at restaurant three times for $10 €$ each time.
- We won't spend money except for train, hotel and restaurant.

2.2 Functions

Functions are mathematical objects which take elements as input and associate an output to each input. This is a very computational vision, a true mathematician would rather say that a function is a set of arrows, going from the input to the output. Let's see how the many possible representations of functions actually describe the same object.

The full formal notation is:

$$
f: \left\lvert\, \begin{array}{lll}
A & \longrightarrow & B \\
x & \longmapsto & f(x)
\end{array}\right.
$$

Which means that f is a function from A to B (ie. inputs are all the elements of the set A and outputs are in B), which associates to each x in A the value $f(x)$.

For example: $\begin{array}{llll}f: \left\lvert\, \begin{array}{lll}\mathbb{N} & \longrightarrow \\ \\ n & \longmapsto & 1-n\end{array}\right., ~\end{array}$

Some classical functions:

A point in full math language: Let $f: A \rightarrow B$ be a function, the inverse function of f is the unique function f^{-1} such that: $\forall a \in A . f^{-1}(f(a))=a$. It exists only if f is bijective ($i e$. surjective: $\forall b \in B, \exists a \in A . f(a)=b$ and injective: $\left.\forall a, a^{\prime} \in A, f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}\right)$.

3 Exercises

Exercise 6:

- We define the function f as $f(x)=4 x+3 . f(5)=$?
- We define g as $g(x)=a x+b$ and we know that $g(0)=5$ and $f(3)=11$. Find the values of a and b.
- Give a function f such that $f(3)=0$.
- Give a function g such that $f(0)=1$ and $f(2)=3$.
- With image 1: $f(\square)=$? With image 2: $g(2)=$?

Exercise 7: Calculate the value of variables, when possible x)

- $x+1=2$
- $x+y=2$ and $x-y=0$
- $\frac{x}{5}=\frac{3}{8}$
- $x+y=2$
- $a+b=6$ and $a=2 b$
- $3 x+5=3$
- $3 x+4=5 x+9$
- $x=\frac{9}{y}$ and $x, y \in \mathbb{N}$

